Open Access
Issue
Manufacturing Rev.
Volume 3, 2016
Article Number 20
Number of page(s) 14
DOI https://doi.org/10.1051/mfreview/2016022
Published online 20 December 2016
  1. J.Y. Huang, Y.K. Wu, H.Q. Ye, Ball milling of ductile metals, Materials Science and Engineering: A 199 (1995) 165–172. [CrossRef] [Google Scholar]
  2. M. Kim et al., Influence of ultrasonication on the mechanical properties of Cu/Al2O3 nanocomposite thin films during electrocodeposition, Surface and Coatings Technology 205 (2010) 2362–2368. [CrossRef] [Google Scholar]
  3. V. Rajkovic, D. Bozic, M.T. Jovanovic, Effects of copper and Al2O3 particles on characteristics of Cu-Al2O3 composites, Materials & Design 31 (2010) 1962–1970. [CrossRef] [Google Scholar]
  4. F. Shehata et al., Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing, Materials & Design 30 (2009) 2756–2762. [CrossRef] [Google Scholar]
  5. T. Takahashi, H. Hashimoto, K. Koyama, Preparation of the Al2O3-dispersion-strengthened copper by the application of mechanical alloying, Journal of the Japan Society of Powder and Powder Metallurgy 36 (1989) 404–410. [CrossRef] [Google Scholar]
  6. A. Upadhyaya, G.S. Upadhyaya, Sintering of copper-alumina composites through blending and mechanical alloying powder metallurgy routes, Materials & Design 16 (1995) 41–45. [CrossRef] [Google Scholar]
  7. D.Y. Ying, D.L. Zhang, Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Materials Science and Engineering: A 286 (2000) 152–156. [CrossRef] [Google Scholar]
  8. D.L. Zhang et al., Consolidation of a Cu-2.5 vol.% Al2O3 powder using high energy mechanical milling, Materials Science and Engineering: A 410–411 (2005) 375–380. [CrossRef] [Google Scholar]
  9. S.-I. Hahn, S.J. Hwang, Estimate of the Hall-Petch and Orowan effects in the nanocrystalline Cu with Al2O3 dispersoid, Journal of Alloys and Compounds 483 (2009) 207–208. [CrossRef] [Google Scholar]
  10. F. Shehata et al., Fabrication of copper-alumina nanocomposites by mechano-chemical routes, Journal of Alloys and Compounds 476 (2009) 300–305. [CrossRef] [Google Scholar]
  11. X. Zhang et al., Preparation of bulk ultrafine-grained and nanostructured Zn, Al and their alloys by in situ consolidation of powders during mechanical attrition, Scripta Materialia 46 (2002) 661–665. [CrossRef] [Google Scholar]
  12. X. Wang et al., Effect of Al2O3 particle size on vacuum breakdown behavior of Al2O3/Cu composite, Vacuum 83 (2009) 1475–1480. [CrossRef] [Google Scholar]
  13. E.P. Koumoulos, P. Jagdale, I.A. Kartsonakis, M. Giorcelli, A. Tagliaferro, C.A. Charitidis, Carbon nanotube/polymer nanocomposites: a study on mechanical integrity through nanoindentation, Polymer Composites 36 (2015) 1432–1446. [Google Scholar]
  14. G. Feng, A.H.W. Ngan, Effects of creep and thermal drift on modulus measurement using depth-sensing indentation, Journal of Materials Research 17 (2002) 660–668. [CrossRef] [Google Scholar]
  15. H. Bei et al., Influence of indenter tip geometry on elastic deformation during nanoindentation, Physical Review Letters 95 (2005) 045501. [CrossRef] [Google Scholar]
  16. C.F. Herrmann, F.W. DelRio, S.M. George, V.M. Bright, Properties of atomic-layer-deposited Al2O3/ZnO dielectric films grown at low temperature for RF MEMS, Micromachining and Microfabrication Process Technology X 5715 (2005) 159–166. [CrossRef] [Google Scholar]
  17. N.R. Moody et al. Thickness effects on the mechanical behavior of ALD film. Presented at the MRS Spring Meeting, San Francisco, CA, USA, April, 2004. [Google Scholar]
  18. J.C. Barbour et al., The mechanical properties of alumina films formed by plasma deposition and by ion irradiation of sapphire, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 166–167 (2000) 140–147. [CrossRef] [Google Scholar]
  19. T.C. Chou et al., Microstructures and mechanical properties of thin films of aluminum oxide, Scripta Metallurgica et Materialia 25 (1991) 2203–2208. [CrossRef] [Google Scholar]
  20. Y.M. Soifer et al., Nanohardness of copper in the vicinity of grain boundaries, Scripta Materialia 47 (2002) 799–804. [CrossRef] [Google Scholar]
  21. J. Dean, G. Aldrich-Smith, T.W. Clyne, Use of nanoindentation to measure residual stresses in surface layers, Acta Materialia 59 (2011) 2749–2761. [CrossRef] [Google Scholar]
  22. T. Chudoba, F. Richter, Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results, Surface and Coatings Technology 148 (2001) 191–198. [CrossRef] [Google Scholar]
  23. E.P. Koumoulos, C.A. Charitidis, N.M. Daniolos, D.I. Pantelis, Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy, Materials Science and Engineering: B 176 (2011) 1585–1589. [CrossRef] [Google Scholar]
  24. C.A. Schuh, Nanoindentation studies of materials, Materials Today 9 (2006) 32–40. [CrossRef] [Google Scholar]
  25. C.Y. Zhang, Y.W. Zhang, K.Y. Zeng, Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate, Journal of Materials Research 19 (2011) 3053–3061. [CrossRef] [Google Scholar]
  26. S. Yang, Analysis of nanoindentation creep for polymeric materials, Journal of Applied Physics 95 (2004) 3655. [CrossRef] [Google Scholar]
  27. A.C. Fischer-Cripps, A simple phenomenological approach to nanoindentation creep, Materials Science and Engineering: A 385 (2004) 74–82. [Google Scholar]
  28. A. Rar et al., On the measurement of creep by nanoindentation with continuous stiffness techniques, MRS, Boston, MA, USA, 2005. [Google Scholar]
  29. A.A. Elmustafa, Pile-up/sink-in of rate-sensitive nanoindentation creeping solids, Modelling and Simulation in Materials Science and Engineering 15 (2007) 823–834. [CrossRef] [Google Scholar]
  30. Y.-T. Cheng, C.-M. Cheng, Effects of “sinking in” and “piling up” on estimating the contact area under load in indentation, Philosophical Magazine Letters 78 (2010) 115–120. [CrossRef] [Google Scholar]
  31. E.P. Koumoulos, C.A. Charitidis, N.M. Daniolos, D.I. Pantelis, Determination of onset of plasticity (yielding) and comparison of local mechanical properties of friction stir welded aluminum alloys using the micro- and nano-indentation techniques, International Journal of Structural Integrity 4 (2013) 143–158. [CrossRef] [Google Scholar]
  32. E.P. Koumoulos, D.A. Dragatogiannis, C.A. Charitidis, Nanomechanical properties and deformation mechanism in metals, oxides and alloys, Nanomechanical Analysis of High Performance Materials, 2014, pp. 123–152. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.