Open Access
Issue
Manufacturing Rev.
Volume 4, 2017
Article Number 2
Number of page(s) 18
DOI https://doi.org/10.1051/mfreview/2017001
Published online 23 February 2017
  1. M. Oubaha, P.C.R. Varma, B. Duffy, Z.M. Gasem, S.J. Hinder, Development of a novel hybrid aluminum-based sol-gel materials: application to the protection of AA2024-T3 alloys in alkaline environment, Advances in Materials Physics and Chemistry 04 (2014) 75–84. [CrossRef] [Google Scholar]
  2. J.R. Davis, Corrosion of aluminium and aluminium alloys, ASM International, Materials Park, OH, 1999. [Google Scholar]
  3. C.G. Alimba, V. Dhillon, A.A. Bakare, M. Fenech, Genotoxicity and cytotoxicity of chromium, copper, manganese and lead, and their mixture in WIL2-NS human B lymphoblastoid cells is enhanced by folate depletion, Mutation Research – Genetic Toxicology and Environmental Mutagenesis 798–799 (2016) 35–47. [CrossRef] [Google Scholar]
  4. E.D. Mekeridis, I.A. Kartsonakis, G.C. Kordas, Multilayer organic-inorganic coating incorporating TiO2 nanocontainers loaded with inhibitors for corrosion protection of AA2024-T3, Progress in Organic Coatings 73 (2012) 142–148. [CrossRef] [Google Scholar]
  5. O. Lev, Z. Wu, S. Bharathi, V. Glezer, A. Modestov, J. Gun, L. Rabinovich, S. Sampath, Sol-gel materials in electrochemistry, Chemistry of Materials 9 (1997) 2354–2375. [CrossRef] [Google Scholar]
  6. Z. Tian, H. Shi, F. Liu, S. Xu, E.-H. Han, Inhibiting effect of 8-hydroxyquinoline on the corrosion of silane-based sol-gel coatings on AA2024-T3, Progress in Organic Coatings 82 (2015) 81–90. [Google Scholar]
  7. M.L. Zheludkevich, K.A. Yasakau, S.K. Poznyak, M.G.S. Ferreira, Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy, Corrosion Science 47 (2005) 3368–3383. [CrossRef] [Google Scholar]
  8. M. Gharagozlou, R. Naderi, Z. Baradaran, Effect of synthesized NiFe2O4-silica nanocomposite on the performance of an ecofriendly silane sol-gel coating, Progress in Organic Coatings 90 (2016) 407–413. [CrossRef] [Google Scholar]
  9. D. Snihirova, S.V. Lamaka, P. Taheri, J.M.C. Mol, M.F. Montemor, Comparison of the synergistic effects of inhibitor mixtures tailored for enhanced corrosion protection of bare and coated AA2024-T3, Surface and Coatings Technology 303 (2016) 342–351. [CrossRef] [Google Scholar]
  10. I. Recloux, M. Mouanga, M.-E. Druart, Y. Paint, M.-G. Olivier, Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys, Applied Surface Science 346 (2015) 124–133. [CrossRef] [Google Scholar]
  11. M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hack, L.F. Dick, T. Nunes, M.G.S. Ferreira, Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor, Corrosion Science 52 (2010) 602–611. [CrossRef] [Google Scholar]
  12. I.A. Kartsonakis, A.C. Balaskas, G.C. Kordas, Influence of cerium molybdate containers on the corrosion performance of epoxy coated aluminium alloys 2024–T3, Corrosion Science 53 (2011) 3771–3779. [CrossRef] [Google Scholar]
  13. E.D. Mekeridis, I.A. Kartsonakis, G.S. Pappas, G.C. Kordas, Release studies of corrosion inhibitors from cerium titanium oxide nanocontainers, Journal of Nanoparticle Research 13 (2010) 541–554. [CrossRef] [Google Scholar]
  14. C.A. Charitidis, Nanomechanical and nanotribological properties of carbon-based thin films: a review, International Journal of Refractory Metals and Hard Materials 28 (2010) 51–70. [Google Scholar]
  15. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7 (2011) 1564–1583. [Google Scholar]
  16. I.A. Kartsonakis, S.G. Stanciu, A.A. Matei, R. Hristu, A. Karantonis, C.A. Charitidis, A comparative study of corrosion inhibitors on hot-dip galvanized steel, Corrosion Science (2016). [Google Scholar]
  17. I.A. Kartsonakis, D.A. Dragatogiannis, E.P. Koumoulos, A. Karantonis, C.A. Charitidis, Corrosion behaviour of dissimilar friction stir welded aluminium alloys reinforced with nanoadditives, Materials & Design 102 (2016) 56–67. [CrossRef] [Google Scholar]
  18. K.C. Emregül, A.A. Aksüt, The effect of sodium molybdate on the pitting corrosion of aluminum, Corrosion Science 45 (2003) 2415–2433. [CrossRef] [Google Scholar]
  19. K.A. Yasakau, J. Tedim, M.L. Zheludkevich, R. Drumm, M. Shem, M. Wittmar, M. Veith, M.G.S. Ferreira, Cerium molybdate nanowires for active corrosion protection of aluminium alloys, Corrosion Science 58 (2012) 41–51. [CrossRef] [Google Scholar]
  20. I.A. Kartsonakis, G. Kordas, Synthesis and characterization of cerium molybdate nanocontainers and their inhibitor complexes, Journal of the American Ceramic Society 93 (2010) 65–73. [CrossRef] [Google Scholar]
  21. I.A. Kartsonakis, I.L. Danilidis, G.S. Pappas, G.C. Kordas, Encapsulation and release of corrosion inhibitors into titania nanocontainers, Journal of Nanoscience and Nanotechnology 10 (2010) 5912–5920. [CrossRef] [Google Scholar]
  22. H. Bei, E.P. George, J.L. Hay, G.M. Pharr, Influence of indenter tip geometry on elastic deformation during nanoindentation, Physical Review Letters 95 (2005) 045501. [CrossRef] [Google Scholar]
  23. L. Wang, C. Zhang, H. Xie, W. Sun, X. Chen, X. Wang, Z. Yang, G. Liu, Calcium alginate gel capsules loaded with inhibitor for corrosion protection of downhole tube in oilfields, Corrosion Science 90 (2015) 296–304. [CrossRef] [Google Scholar]
  24. P. Innocenzi, G. Brusatin, M. Guglielmi, R. Bertani, New synthetic route to (3-glycidoxypropyl)trimethoxysilane-based hybrid organic-inorganic materials, Chemistry of Materials 11 (1999) 1672–1679. [CrossRef] [Google Scholar]
  25. I. Bobos, Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal, Clays and Clay Minerals 49 (2001) 596–607. [CrossRef] [Google Scholar]
  26. S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F. Montemor, M.G.S. Ferreira, High effective organic corrosion inhibitors for 2024 aluminium alloy, Electrochimica Acta 52 (2007) 7231–7247. [CrossRef] [Google Scholar]
  27. C.H. Hsu, F. Mansfeld, Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance, Corrosion 57 (2001) 747–748. [CrossRef] [Google Scholar]
  28. G. Kong, L. Lingyan, J. Lu, C. Che, Z. Zhong, Corrosion behavior of lanthanum-based conversion coating modified with citric acid on hot dip galvanized steel in aerated 1 m NaCl solution, Corrosion Science 53 (2011) 1621–1626. [CrossRef] [Google Scholar]
  29. K.S. Cole, Dispersion and absorption in dielectrics II. Direct current characteristics, The Journal of Chemical Physics 10 (1942) 98. [CrossRef] [Google Scholar]
  30. J.R. Macdonald, E. Barsoukov, Fundamentals of impedance spectroscopy, in: E. Barsoukov, J.R. Macdonald (Eds.), Impedance spectroscopy theory, experiment, and applications, John Wiley and Sons, USA, 2005, pp. 13–20. [Google Scholar]
  31. S. Shen, Y. Zuo, X. Zhao, The effects of 8-hydroxyquinoline on corrosion performance of a Mg-rich coating on AZ91D magnesium alloy, Corrosion Science 76 (2013) 275–283. [CrossRef] [Google Scholar]
  32. R. Winston Revie, Uhlig’s corrosion handbook, 2nd edn, John Wiley and Sons, New York, 2000, 694–704. [Google Scholar]
  33. S.J. Kelly, D.W. Shoesmith, R.G. Buchheit, Electrochemical thermodynamics and kinetics of relevance to corrosion, in: P.A. Schweitzer (Ed.), Electrochemical techniques in corrosion science and engineering, Marcel Dekker, Inc., New York, 2002, pp. 9–54. [Google Scholar]
  34. X.G. Zhang, Electrochemical thermodynamics and kinetics, in: X.G. Zhang (Ed.), Corrosion and electrochemistry of zinc, Springer Science+ Business Media, Llc., New York, 1996, pp. 19–64. [CrossRef] [Google Scholar]
  35. M. Plawecka, D. Snihirova, B. Martins, K. Szczepanowicz, P. Warszynski, M.F. Montemor, Self healing ability of inhibitor-containing nanocapsules loaded in epoxy coatings applied on aluminium 5083 and galvanneal substrates, Electrochimica Acta 140 (2014) 282–293. [CrossRef] [Google Scholar]
  36. U. Donatus, G.E. Thompson, X. Zhou, J. Wang, A. Cassell, K. Beamish, Corrosion susceptibility of dissimilar friction stir welds of AA5083 and AA6082 alloys, Materials Characterization 107 (2015) 85–97. [CrossRef] [Google Scholar]
  37. A. Earnshaw, N.N. Greenwood, Chromium, molybdenum and tungsten, in: N.N. Greenwood, A. Earnshaw (Eds.), Chemistry of the elements, Butterworth-Heinemann, Oxford, 1998, pp. 1022–1039. [Google Scholar]
  38. G. Mu, X. Li, Q. Qu, J. Zhou, Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution, Corrosion Science 48 (2006) 445–459. [CrossRef] [Google Scholar]
  39. C.N. Panagopoulos, E.P. Georgiou, A.G. Gavras, Corrosion and wear of 6082 aluminum alloy, Tribology International 42 (2009) 886–889. [CrossRef] [Google Scholar]
  40. M. Amra, K. Ranjbar, R. Dehmolaei, Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites, Journal of Materials Engineering and Performance 24 (2015) 3169–3179. [CrossRef] [Google Scholar]
  41. S.A. Hayes, P. Yu, T.J. O’Keefe, M.J. O’Keefe, J.O. Stoffer, The phase stability of cerium species in aqueous systems, Journal of the Electrochemical Society 149 (2002) C623. [CrossRef] [Google Scholar]
  42. B.R.W. Hinton, L. Wilson, The corrosion inhibition of zinc with cerous chloride, Corrosion Science 29 (1989) 967–985. [CrossRef] [Google Scholar]
  43. Y.-T. Cheng, C.-M. Cheng, Effects of “sinking in” and “piling up” on estimating the contact area under load in indentation, Philosophical Magazine Letters 78 (2010) 115–120. [CrossRef] [Google Scholar]
  44. A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (2000) 1–11. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.