Open Access
Issue |
Manufacturing Rev.
Volume 4, 2017
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/mfreview/2017006 | |
Published online | 02 June 2017 |
- J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering: R: Reports 37 (2002) 129–281. [Google Scholar]
- J.-M. Bonard, Carbon nanostructures by hot filament chemical vapor deposition: growth, properties, applications, Thin Solid Films 501 (2006) 8–14. [CrossRef] [Google Scholar]
- S. Lee, J. Won, J. Choi, S. Jang, Y. Jee, H. Lee, D. Byun, Preparation and analysis of amorphous carbon films deposited from (c6h12)/ar/he chemistry for application as the dry etch hard mask in the semiconductor manufacturing process, Thin Solid Films 519 (2011) 6737–6740. [CrossRef] [Google Scholar]
- D. Zhu, Y. Liu, L. Yuan, Y. Liu, X. Li, L. Yi, H. Wei, K. Yao, Controllable synthesis of large-area free-standing amorphous carbon films and their potential application in supercapacitors, RSC Advances 4 (2014) 63734–63740. [CrossRef] [Google Scholar]
- J.V.S. Moreira, P.W. May, E.J. Corat, A.C. Peterlevitz, R.A. Pinheiro, H. Zanin, Diamond and carbon nanotube composites for supercapacitor devices, Journal of Electronic Materials 46 (2016) 929–935. [CrossRef] [Google Scholar]
- D.S. da Silva, A.D.S. Côrtes, M.H. Oliveira, E.F. Motta, G.A. Viana, P.R. Mei, F.C. Marques, Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells, Journal of Applied Physics 110 (2011) 043510. [CrossRef] [Google Scholar]
- J.P. Sullivan, T.A. Friedmann, K. Hjort, Diamond and amorphous carbon mems, MRS Bulletin 26 (2011) 309–311. [CrossRef] [Google Scholar]
- M. Santos, M.M.M. Bilek, S.G. Wise, Plasma-synthesised carbon-based coatings for cardiovascular applications, Biosurface and Biotribology 1 (2015) 146–160. [CrossRef] [Google Scholar]
- S. Mitura, E. Mitura, A. Mitura, Manufacture of amorphous carbon layers by r.f. dense plasma CVD, Diamond and Related Materials 4 (1995) 302–303. [CrossRef] [Google Scholar]
- K.O. Park, B.D. An, S.J. Lee, Method of forming amorphous carbon film and method of manufacturing semiconductor device using the same, Patent: US20080293248 (2008). [Google Scholar]
- S. Hidzhazi, Nano-manufacturing and product design: practical solutions to current manufacturing challenges, International Journal of Interdisciplinary Research and Innovations 3 (2015) 66–72. [Google Scholar]
- A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale Research Letters 9 (2014) 393. [CrossRef] [Google Scholar]
- S. Jae Keun, K. Ki-han, K. Jaekwang, L. Yu sung, K. Eun Kyu, L. Jae-Hyeoung, C. Won Seok, Growth of metal-free carbon nanotubes with amorphous carbon catalyst layer on glass substrates by microwave plasma enhanced chemical vapor deposition, in: P.K. Chu (Ed.), Nanoelectronics Conference (INEC) 3rd International, IEEE Catalogue Number: CFP10625, ISBN: 978-1-4244-3544-9, Library of Congress: 2008911110, pp. 79–80. [Google Scholar]
- A. Bachmatiuk, J. Boeckl, H. Smith, I. Ibrahim, T. Gemming, S. Oswald, W. Kazmierczak, D. Makarov, O.G. Schmidt, J. Eckert, L. Fu, M.H. Rummeli, Vertical graphene growth from amorphous carbon films using oxidizing gases, The Journal of Physical Chemistry C 119 (2015) 17965–17970. [CrossRef] [Google Scholar]
- C. Yang, P. Wu, W. Gan, M. Habib, W. Xu, Q. Fang, L. Song, Low temperature CVD growth of ultrathin carbon films, AIP Advances 6 (2016) 055310. [CrossRef] [Google Scholar]
- A. Barreiro, F. Börrnert, S.M. Avdoshenko, B. Rellinghaus, G. Cuniberti, M.H. Rümmeli, L.M.K. Vandersypen, Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing, Scientific Reports 3 (2013), 1–6. [CrossRef] [Google Scholar]
- N. Larouche, B.L. Stansfield, Classifying nanostructured carbons using graphitic indices derived from Raman spectra, Carbon 48 (2010) 620–629. [CrossRef] [Google Scholar]
- C.F. Cullis, N.H. Franklin, The pyrolysis of acetylene at temperatures from 500 to 1000 °C, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 280 (1964) 139–152. [CrossRef] [Google Scholar]
- C. Charitidis, E. Koumoulos, D. Dragatogiannis, Nanotribological behavior of carbon based thin films: friction and lubricity mechanisms at the nanoscale, Lubricants 2 (2013) 22–47. [CrossRef] [Google Scholar]
- E.P. Koumoulos, C.A. Charitidis, D.P. Papageorgiou, A.G. Papathanasiou, A.G. Boudouvis, Nanomechanical and nanotribological properties of hydrophobic fluorocarbon dielectric coating on tetraethoxysilane for electrowetting applications, Surface and Coatings Technology 206 (2012) 3823–3831. [Google Scholar]
- W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7 (2011) 1564–1583. [Google Scholar]
- I.N. Sneddon, Boussinesq’s problem for a rigid cone, Mathematical Proceedings of the Cambridge Philosophical Society 44 (2008) 492. [Google Scholar]
- L. Huang, J. Lu, M. Troyon, Nanomechanical properties of nanostructured titanium prepared by smat, Surface and Coatings Technology 201 (2006) 208–213. [CrossRef] [Google Scholar]
- R.B. King, Elastic analysis of some punch problems for a layered medium, International Journal of Solids and Structures 23 (1987) 1657–1664. [Google Scholar]
- H. Bei, E.P. George, J.L. Hay, G.M. Pharr, Influence of indenter tip geometry on elastic deformation during nanoindentation, Physical Review Letters 95 (2005) 045501. [CrossRef] [Google Scholar]
- L. Bokobza, J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites, Express Polymer Letters 6 (2012) 601–608. [CrossRef] [Google Scholar]
- A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Communications 143 (2007) 47–57. [CrossRef] [Google Scholar]
- P.K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films, Materials Chemistry and Physics 96 (2006) 253–277. [CrossRef] [Google Scholar]
- E.P. Koumoulos, P. Jagdale, I.A. Kartsonakis, M. Giorcelli, A. Tagliaferro, C.A. Charitidis, Carbon nanotube/polymer nanocomposites: a study on mechanical integrity through nanoindentation, Polymer Composites 36 (2015) 1432–1446. [Google Scholar]
- H. Li, A. Ghosh, Y.H. Han, R.C. Bradt, The frictional component of the indentation size effect in low load microhardness testing, Journal of Materials Research 8 (2011) 1028–1032. [CrossRef] [Google Scholar]
- Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals, Journal of Materials Research 10 (2011) 853–863. [CrossRef] [Google Scholar]
- Y. Gaillard, C. Tromas, J. Woirgard, Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in mgo, Acta Materialia 54 (2006) 1409–1417. [CrossRef] [Google Scholar]
- E.P. Koumoulos, C.A. Charitidis, Surface analysis and mechanical behaviour mapping of vertically aligned cnt forest array through nanoindentation, Applied Surface Science 396 (2017), 681–687. [Google Scholar]
- Y.L. Chiu, A.H.W. Ngan, Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal, Acta Materialia 50 (2002) 1599–1611. [CrossRef] [Google Scholar]
- E.P. Koumoulos, T. Parousis, A.F.A. Trompeta, I.A. Kartsonakis, C.A. Charitidis, Investigation of mwcnt addition into poly-dimethylsiloxane-based coatings, Plastics, Rubber and Composites 45 (2016) 106–117. [Google Scholar]
- T. Schlagradl, R. Schneider, G. Posch, R. Schnitzer, Investigation of the hardness-toughness relationship of a welded joint after different heat treatment cycles, Welding in the World 57 (2012) 113–121. [CrossRef] [Google Scholar]
- A. Leyland, A. Matthews, Design criteria for wear-resistant nanostructured and glassy-metal coatings, Surface and Coatings Technology 177–178 (2004) 317–324. [CrossRef] [Google Scholar]
- Y.-T. Cheng, C.-M. Cheng, What is indentation hardness?, Surface and Coatings Technology 133–134 (2000) 417–424. [Google Scholar]
- A. Leyland, A. Matthews, Optimization of nanostructured tribological coatings, in: A. Cavaleiro, J.Th.M. de Hosson (Eds.), Nanostructured Coating, 1st edn., Springer Science + Business Media, LLC, 2006, pp. 511–538. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.