Open Access
Issue
Manufacturing Rev.
Volume 4, 2017
Article Number 4
Number of page(s) 18
DOI https://doi.org/10.1051/mfreview/2017002
Published online 12 May 2017
  1. L. Da Silva, M. El-Sharif, C. Chisholm, S. Laidlaw, A review of the cold roll bonding of AlSn alloy/steel bimetal strips, in: Conference Metal 2014 Proceedings, Brno, 2014. [Google Scholar]
  2. B.-M. Li, J.-F. Han, G.-M. Xu, J.-Z. Cui, Effect of cold-rolling and annealing of interfacial structures and properties of A500/steel bimetal strip, Transactions of Nonferrous Metals Society of China 15 (2005) 754–758. [Google Scholar]
  3. G.C. Pratt, Materials for plain bearings, International Metallurgical Reviews 18 (1973) 62–88. [CrossRef] [Google Scholar]
  4. M. Stolbchenko, O. Grydin, F. Nuernberger, A. Samsonenko, M. Schaper, Sandwich rolling of twin-roll cast aluminium-steel clad strips, in: 11th International Conference on Technology of Plasticity, Nagoya, 2014. [Google Scholar]
  5. R. Jamaati, M.R. Toroghinejad, Investigation of the parameters of the cold roll bonding (CRB) process, Materials Science and Engineering 527 (2010) 2320–2326. [CrossRef] [Google Scholar]
  6. T.A. Barnes, I.R. Pashby, Joining techniques for aluminium spaceframes used in automobiles. Part II - adhesive bonding and mechanical fasteners, Journal of Materials Processing Technology 99 (1998) 72–79. [CrossRef] [Google Scholar]
  7. B. Drinkwater, P. Cawley, Measurement of the frequency dependence of the ultrasonic reflection coefficient from thin interface layers and partially contacting interfaces, Ultrasonics 35 (1997) 479–488. [CrossRef] [Google Scholar]
  8. R.J. Freemantle, R.E. Challis, Combined compression and shear wave ultrasonic measurements on curing adhesive, Measurement Science and Technology 9 (1998) 1291–1302. [CrossRef] [Google Scholar]
  9. S. Dixon, D. Jaques, S.B. Palmer, G. Rowlands, The measurement of shear and compression waves in curing epoxy adhesives using ultrasonic reflection and transmission techniques simultaneously, Measurement Science and Technology 15 (2004) 939–947. [CrossRef] [Google Scholar]
  10. E. Siryabe, M. Renier, A. Meziane, M. Castaings, The transmission of lamb waves across adhesively bonded lap joints to evaluate interfacial adhesive properties, in: 2015 ICU International Congress on Ultrasonics, Metz, 2015, 541–544. [Google Scholar]
  11. F. Lanza di Scalea, P. Rizzo, A. Marzani, Propagation of ultrasonic guided waves in lap-shear adhesive joints: case of incident A0 lamb wave, Journal of the Acoustical Society of America 115 (2004) 146–156. [CrossRef] [Google Scholar]
  12. R. Seifried, J.J. Laurence, Q. Jianmin, Propagation of guided waves in adhesive bonded components, NDT&E International 35 (2002) 317–328. [CrossRef] [Google Scholar]
  13. Y.Y. Hung, H.P. Ho, Shearography: an optical measurement technique and applications, Materials Science and Engineering: R: Reports 49 (2005) 61–87. [CrossRef] [Google Scholar]
  14. M. Hung, Y.S. Chen, S.P. Ng, S.M. Shepard, Y. Hou, J.R. Lhota, Review and comparison of shearography and pulsed thermography for adhesive bond evaluation, Optical Engineering 5 (2007) 051007–051007. [CrossRef] [Google Scholar]
  15. Y.Y. Hung, Y.S. Chen, S.P. Ng, L. Liu, Y.H. Huang, B.L. Luk, R.W. Ip, C.M. Wu, P.S. Chung, Review and comparison of shearography and active thermography for nondestructive evaluation, Materials Science and Engineering 64 (2009) 73–112. [CrossRef] [Google Scholar]
  16. N.P. Avdelidis, B.C. Hawtin, D.P. Almond, Transient thermography in the assessment of defects of aircraft composites, NDT&E International 36 (2003) 433–439. [CrossRef] [Google Scholar]
  17. N.P. Avdelidis, D.P. Almond, A. Dobbinson, B.C. Hawtin, C. Ibarra-Castanedo, Aircraft composites assessment by means of transient thermal NDT, Progress in Aerospace Sciences 40 (2004) 143–162. [CrossRef] [Google Scholar]
  18. C. Meola, G.M. Carlomagno, Application of infrared thermography to adhesion science, Journal of Adhesion Science and Technology 20 (2006) 589–632. [CrossRef] [Google Scholar]
  19. S. Bagavathiappan, B.B. Lahiri, T. Saravanan, J. Philip, T. Jayakumar, Infrared thermography for condition monitoring – a review, Infrared Physics & Technology 60 (2013) 35–55. [Google Scholar]
  20. C. Maierhofer, R. Krankenhagen, R. Roellig, M. Kalisch, J. Meinhardt, Development and application of active thermography for monitoring of deterioration processes of historic structures, in: Nondestructive Testing of Materials and Structures, RILEM Bookseries, 2013, pp. 1111–1116. [CrossRef] [Google Scholar]
  21. G. Kim, S. Hong, G.H. Kim, K.Y. Jhang, Evaluation of subsurface defects in fiber glass composite plate using lock-in technique, International Journal of Precision Engineering and Manufacturing 13 (2012) 465–470. [CrossRef] [Google Scholar]
  22. B. Yang, P.K. Liaw, M. Morrison, C.T. Liu, R.A. Buchanan, J.Y. Huang, R.C. Kuo, J.G. Huang, D.E. Fielden, Temperature evolution during fatigue damage, Intermetallics 13 (2005) 419–428. [CrossRef] [Google Scholar]
  23. M. Omar, M. Hassan, K. Donohue, K. Saito, R. Alloo, Infrared thermography for inspecting the adhesion of plastic welded joints, NDT&E International 1 (2006) 1–7. [CrossRef] [Google Scholar]
  24. S. Marinetti, D. Robba, F. Cernuschi, P.G. Bison, E. Grinzato, Thermographic inspection of TBC coated gas turbine blades: Discrimination between coating over-thicknesses and adhesion defects, Infrared Physics & Technology 3 (2007) 281–285. [CrossRef] [Google Scholar]
  25. S.M. Shepard, M.F. Beemer, Advances in thermographic signal reconstruction, in: Proceedings of SPIE Thermosense: Thermal Infrared Applications XXXVII, Baltimore, 2015. [Google Scholar]
  26. W. Steinchen, L. Yang, G. Kupfer, P. Maeckel, Non-destructive testing of aerospace composite materials using digital shearography, Journal of Aerospace Engineering 1 (1998) 21–30. [Google Scholar]
  27. N.P. Avdelidis, D.P. Almond, Z.P. Marioli-Riga, A. Dobbinson, B.C. Hawtin, Pulsed thermography: philosophy, qualitative and quantitative analysis on aircraft materials and applications, in: Advances in Signal Processing for Non Destructive Evaluation of Materials, Quebec City, 2005. [Google Scholar]
  28. C. Meola, G.M. Carlomagno, Recent advances in the use of infrared thermography, Measurement Science and Technology 15 (2004) R27. [CrossRef] [Google Scholar]
  29. X. Huan, Z. Zeng, W. Li, M. Islam, J. Lu, V. Loggins, E. Yitamben, L.D. Favro, G. Newaz, R.L. Thomas, Acoustic chaos for enhanced detectability of cracks by sonic infrared imaging, Journal of Applied Physics 7 (2004) 3792–3797. [CrossRef] [Google Scholar]
  30. F. Chen, Digital shearography: state of the art and some applications, Journal of Electronic Imaging 1 (2001) 240–251. [CrossRef] [Google Scholar]
  31. A.V. Fantin, D.P. Willemann, M.E. Benedet, A.G. Albertazzi, Robust method to improve the quality of shearographic phase maps obtained in harsh environments, Applied Optics 55 (2016) 1318–1323. [CrossRef] [Google Scholar]
  32. T. Hasiotis, E. Badogiannis, N.G. Tsouvalis, Application of ultrasonic C-scan techniques for tracing defects in laminated composite materials, Journal of Mechanical Engineering 3 (2009) 192–203. [Google Scholar]
  33. B. Djordjevic, Nondestructive test technology for the composites, in: The 10th International Conference of the Slovenian Society for non-destructive testing, Ljubljana, 2009, pp. 259–265. [Google Scholar]
  34. Volume 17: Nondestructive evaluation and quality control, ASM Handbook, 1989. [Google Scholar]
  35. W. Alobaidi, E. Sandgren, H. Al-Rizzo, A survey on benchmark defects encountered in the oil pipe industries, International Journal of Scientific & Engineering Research 6 (2015) 844–853. [Google Scholar]
  36. C.C. Guyott, P. Cawley, R.D. Adams, The non-destructive testing of adhesively bonded structures: a review, The Journal of Adhesion 20 (1986) 129–159. [CrossRef] [Google Scholar]
  37. H. Gao, S. Ali, B. Lopez, Efficient detection of delamination in multilayered structures using ultrasonic guided wave EMATs, NDT&E International 43 (2010) 316–322. [CrossRef] [Google Scholar]
  38. X. Jian, S. Dixon, R.S. Edwards, J. Reed, “Coupling mechanism of electromagnetic acoustical transducers for ultrasonic generation”, Journal of the Acoustical Society of America, 119(5), Part 1 (2006) 2693–2701. [Google Scholar]
  39. H.J. Salzburger, F. Niese, G. Dobmann, Emat pipe inspection with guided waves, Welding in the World 56 (2012) 35–43. [CrossRef] [Google Scholar]
  40. P.A. Petcher, M.D. Potter, S. Dixon, A new electromagnetic acoustic transducer (EMAT) design for operation on rail, NDT&E International 65 (2014) 1–7. [CrossRef] [Google Scholar]
  41. P.A. Petcher, S. Dixon, Weld defect detection using PPM EMAT generated shear horizontal ultrasound, NDT&E International 74 (2015) 58–65. [CrossRef] [Google Scholar]
  42. K. Arun, R. Dhayalan, K. Balasubramaniam, B. Maxfield, P. Peres, D. Barnoncel, An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection, in: AIP Conference Proceedings (2012). [Google Scholar]
  43. S. Huang, Z. Wei, W. Zhao, S. Wang, A new omni-directional EMAT for ultrasonic Lamb wave tomography imaging of metallic plate defects, Sensors 2 (2014) 3458–3476. [CrossRef] [Google Scholar]
  44. S. Dixon, C. Edwards, S.B. Palmer, Recent developments in the characterisation of aluminium sheets using electromagnetic acoustic transducers (EMATs), Insight 44 (2002) 274–278. [Google Scholar]
  45. R.S. Edwards, S. Dixon, X. Jian, Characterisation of defects in the railhead using ultrasonic surface waves, NDT&E International 39 (2006) 468–475. [CrossRef] [Google Scholar]
  46. R.S. Edwards, X. Jian, Y. Fan, S. Dixon, Signal enhancement of the in-plane and out-of-plane Rayleigh wave components, Applied Physical Letters 19 (2005) 194104. [CrossRef] [Google Scholar]
  47. M. Hirao, H. Ogi, Electromagnetic acoustic resonance and materials characterization, Ultrasonics 6 (1997) 413–421. [CrossRef] [Google Scholar]
  48. S. Huang, W. Zhao, Y. Zhang, S. Wang, Study on the lift-off effect of EMAT, Sensors and Actuators S: Physical 2 (2009) 218–221. [Google Scholar]
  49. M. Hirao, H. Ogi, EMATs for science and industry: noncontacting ultrasonic measurements, Kluwer Academic Publishers, London, 2003. [CrossRef] [Google Scholar]
  50. R.B. Thompson, Physical principles of measurements with EMAT transducers, vol. 19, Academic Press, Inc., Ames, 1990, pp. 157–200. [Google Scholar]
  51. K. Kawashima, Theory and numerical calculation of the acoustic field produced in metal by an electromagnetic ultrasonic transducer, The Journal of the Acoustical Society of America 60 (1976) 1089–1099. [CrossRef] [Google Scholar]
  52. S.B. Palmer, S. Dixon, Industrially viable non-contact ultrasound, Insight 45 (2003) 211–217. [Google Scholar]
  53. H.D. Manesh, H.S. Shahabi, Effective parameters on bonding strength of roll bonded Al/St/Al multilayer strips, Journal of Alloys and Compounds 476 (2009) 292–299. [CrossRef] [Google Scholar]
  54. M. Sahin, Effect of surface roughness on weldability in aluminium sheets joined by cold pressure welding, Industrial Lubrication and Tribology 60 (2008) 249–254. [CrossRef] [Google Scholar]
  55. R.F. Tylecote, D. Howd, J.E. Furmidge, The influence of surface films on the pressure welding of metals, British Welding Journal 1 (1958) 21–38. [Google Scholar]
  56. M. Movahedi, A.H. Kokabi, S.S. Reihani, Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization, Materials & Design 32 (2011) 3143–3149. [CrossRef] [Google Scholar]
  57. H.A. Mohamed, J. Washburn, Mechanism of solid state pressure welding, Welding Journal 54 (1975) 302–310. [Google Scholar]
  58. L. DaSilva, M. El-Sharif, C. Chisholm, S. Laidlaw, A novel adaption of the T-peel bimetal bond test based on the thin film bonding theory using cold roll bonded AlSn/steel bimetal laminates, in: Volume 3: Advances in Manufacturing Technology XXX, Loughborough, 2016, 161–166. [Google Scholar]
  59. R.E. Green, Non-contact ultrasonic techniques, Ultrasonics 42 (2004) 9–16. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.