Open Access
Review
Issue
Manufacturing Rev.
Volume 5, 2018
Article Number 4
Number of page(s) 12
DOI https://doi.org/10.1051/mfreview/2018004
Published online 23 May 2018
  1. A strategy for competitive, sustainable and secure energy, DG −Energy, 2011 [Google Scholar]
  2. I. Stefanescu, M. Varlam, E. Carcadea, New approaches on the energy storage technologies in Romania, Bul. AGIR/Supl. 1 (2015) 54–60 [Google Scholar]
  3. Thermal Energy Storage/Technology Brief, IEA-ETSAP and IRENA© Technology Brief E17-January 2013 [Google Scholar]
  4. P.E. Guy Frankenfiled, USA presentation [Google Scholar]
  5. http://ec.europa.eu/research/energy/eu/index_en.cfm?pg=research-csp-support [Google Scholar]
  6. Geyer, SolarPACES Annual Report 2007 [Google Scholar]
  7. S. Kuravi, J. Trahan, D. Yogi Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energy Combust. Sci. 39 (2013) 285–319 [CrossRef] [Google Scholar]
  8. A.G. Fernández, H. Galleguillos, F.J. Pérez, Corrosion ability of a novel heat transfer fluid for energy storage in CSP plants, Oxid. Met. 82 (2014) 331–345 [CrossRef] [Google Scholar]
  9. J. Burgaleta, SENER torresol energy win U.S. CSP today awards, Renew. Energy Focus 12 (2010) [Google Scholar]
  10. S. Guillot, A. Faik, A. Rakhmatullin, J. Lambert, E. Veron, P. Echegut, C. Bessada, N. Calvet, X. Py, Corrosion effects between molten salts and thermal storage materialfor concentrated solar power plants, Appl. Energy 94 (2012) 174–181 [CrossRef] [Google Scholar]
  11. I. Dinçer, M.A. Rosen, Thermal energy storage systems and applications, John Wiley & Sons, 2002 [Google Scholar]
  12. H. Mehling, L.F. Cabeza, Heat and cold storage with PCM. An up to date introduction into basics and applications, Springer, Berlin, Germany, 2008 [Google Scholar]
  13. V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art, Renew. Sustain. Energy Rev. 11 (2007) 1146–1166 [Google Scholar]
  14. H. Mehling, L.F. Cabeza, Phase change materials and their basic properties, in: Thermal Energy Storage For Sustainable Energy Consumption: Fundamentals, Case Studies And Design (Ed. H.O. Paksoy), Kluwer Academic Publishers Group, 2007, pp. 257–278 [CrossRef] [Google Scholar]
  15. B. Zalba, J.M. Marín, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng. 23 (2003) 251–283 [CrossRef] [Google Scholar]
  16. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev. 13 (2009) 318–345 [Google Scholar]
  17. T. Nomura, C. Zhu, N. Sheng, G. Saito, T. Akiyama, Micro-encapsulation of metal-based phase change material for high-temperature thermal energy storage, Sci. Rep. 5 (2015) 9117. DOI: 10.1038/srep09117 [CrossRef] [Google Scholar]
  18. W. Zhao, Characterization of encapsulated phase change materials for thermal energy storage, Theses and dissertations, Paper 1135 Lehigh University, 2013 [Google Scholar]
  19. A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization, Renew. Sustain. Energy Rev. 14 (2010) 31–55 [Google Scholar]
  20. M. Medrano, A. Gil, I. Martorell, X. Potau, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 2-Case studies, Renew. Sustain. Energy Rev. 14 (2010) 56–72 [CrossRef] [Google Scholar]
  21. A. Stein et al., Adv. Mater. 21 (2009) 265–293 [CrossRef] [Google Scholar]
  22. C. Liang, et al., Angew. Chem. Int. Ed. 47 (2008) 3696–3717 [CrossRef] [Google Scholar]
  23. T. Nomura, C. Zhu, N. Sheng, G. Saito, T. Akiyama, Micro-encapsulation of metal-based phase change material for high-temperature thermal energy storage, Sci. Rep. 5 (2015) 9117. DOI:10.1038/srep09117 [CrossRef] [Google Scholar]
  24. W. Zhao, Characterization of encapsulated phase change materials for thermal energy storage, Theses and dissertations, Paper 1135 Lehigh University, 2013 [Google Scholar]
  25. N. Maruoka, T. Akiyama, Thermal stress analysis of PCM encapsulation for heat recovery of high temperature waste heat, J. Chem. Eng. Japan 36 (2003) 794–798 [Google Scholar]
  26. Y. Hong, S. Ding, W. Wu, J. Hu, A.A. Voevodin, L. Gschwender, E. Snyder, L. Chow, M. Su, Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer, Appl. Mater. Interfaces 2 (2010) 1685–1691 [CrossRef] [Google Scholar]
  27. Z. Ge, F. Ye, H. Cao, G. Leng, Y. Qin, Y. Ding, Carbonate-salt-based composite materials for medium and high-temperature thermal energy storage, Particuology 15 (2014) 77–81 [CrossRef] [Google Scholar]
  28. P. Chou, C. Chandrasekaran, G.Z. Cao, Sol-gel derived hybrid coatings for corrosion protection, J. Sol-Gel Sci. Technol. 26 (2003) 321–327 [Google Scholar]
  29. R.B. Figueira, C.J.R. Silva, E.V. Pereira, Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: a review of recent progress, J. Coat. Technol. Res. 12, 2015, 1–35 [Google Scholar]
  30. M. Graham, E. Shchukina, P. Felix De Castro, D. Shchukin, Nanocapsules containing salt hydrate phase change materials for thermal energy storage, J. Mater. Chem. A 4 2016, 16906–16912 [CrossRef] [Google Scholar]
  31. D. Platte, U. Helbig, R. Houbertz, G. Sextl, Macromol. Mater. Eng. 298 (2013) 67–77 [CrossRef] [Google Scholar]
  32. A. Schoth, K. Landfester, R. Muñoz-Espi, Langmuir 31 (2015) 3784–3788 [CrossRef] [Google Scholar]
  33. F. Salaun, E. Devaux, S. Bourbigot, P. Rumeau, Carbohydr. Polym. 79 (2010) 964–974 [CrossRef] [Google Scholar]
  34. Procedure for micro-encapsulation of phase change materials by spray-drying. EP 2 119 498 A1 [Google Scholar]
  35. US 2017 /0030077. Micro-encapsulation of materials using cenospheres [Google Scholar]
  36. US 2011 /0259544. Encapsulated phase change apparatus for thermal energy storage [Google Scholar]
  37. US 2012 /0055661. High temperature thermal energy storage system [Google Scholar]
  38. US 2015 /0284616. Encapsulation of thermal energy storage media [Google Scholar]
  39. A.M. Motoc, A.I. Tudor, M. Petriceanu, V. Badilita, E.J.P. del Barrio, Prasanta, V. Fierro, A. Celzard, R.R. Piticescu, Mater. Chem. Phys. 161 (2015) 219–227 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.