Open Access
Manufacturing Rev.
Volume 5, 2018
Article Number 5
Number of page(s) 12
Published online 01 June 2018
  1. M.C. Shaw, Metal cutting principles, University Press, New York, Oxford, 2005 [Google Scholar]
  2. C. Bruni, F.F. Gabrielli, M. Simoncini, Effect of the lubrication-cooling technique, insert technology and machine bed material on the workpart surface finish and tool wear in finish turning of AISI 420B, Int. J. Mach. Tool. Manuf. 46 (2006) 1547–1554 [CrossRef] [Google Scholar]
  3. S. Debnath, M.M. Reddy, Q.S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: a review, J. Clean. Prod. 83 (2014) 33–47 [CrossRef] [Google Scholar]
  4. N.R. Dhar, S. Islam, M. Kamruzzaman, Effect of minimum quantity lubrication (MQL) on tool wear, surface roughness and dimensional deviation in turning AISI 4340 steel, Gazi Univ. J. Sci. 20 (2007) 23–32 [Google Scholar]
  5. D.V. Lohar, C.R. Nanavte, Performance evaluation of minimum quantity lubrication (MQL) Using CBN tool during hard turning of AISI 4340 and its comparison with dry and wet turning, Int. J. Ind. Eng. Manag. Sci. 3 (2013) 102 [Google Scholar]
  6. B. Tasdelen, H. Thordenberg, D. Olofsson, An experimental investigation on contact length during minimum quantity lubrication (MQL) machining, J. Mater. Process. Technol. 203 (2008) 221–231 [CrossRef] [Google Scholar]
  7. B. Shen, Minimum quantity lubrication grinding using nano fluids (a dissertation submitted in partial fulfilment of the requirements for the degree of doctor of philosophy (Mechanical Engineering) in the University of Michigan, Michigan ), 2008 [Google Scholar]
  8. S. Prabhu, B.K. Vinayagam, Fractal dimensional surface analysis of AISI D2 Tool steel material with nanofluids in grinding process using atomic force microscopy, J. Braz. Soc. Mech. Sci. Eng. 33 (2011) 459–466 [CrossRef] [Google Scholar]
  9. F. Klocke, G. Eisenblatter, Dry cutting, CIRP 46 (1997) 519–525 [CrossRef] [Google Scholar]
  10. R.Q. Sardiñas, M.R. Santana, E.A. Brindis, Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes, Eng. Appl. Artif. Intell. 19 (2006) 127–133 [Google Scholar]
  11. D. Singh, P.V. Rao, A surface roughness prediction model for hard turning process, Int. J. Manuf. Technol. 32 (2007) 1115–1124 [CrossRef] [Google Scholar]
  12. Y.K. Hwang, C.M. Lee, Surface roughness and cutting force prediction in MQL and wet turning process of AISI 1045 using design of experiments, J. Mech. Sci. Technol. 24 (2010) 1669–1677 [CrossRef] [Google Scholar]
  13. K. Venkatesan, R. Ramanujam, J. Joel, P. Jeyapandiarajan, M. Vignesh, D.J. Tolia, R. Venkata Krishna, Study of cutting force and surface roughness in machining of al alloy hybrid composite and optimized using response surface methodology, 12th global congress on manufacturing and management, GCMM, Procedia Eng. 97 (2014) 677–686 [CrossRef] [Google Scholar]
  14. B.A. Khidhir, W. Al-Oqaiel, P.M. Kareem, Prediction models by response surface methodology for turning operation, Am. J. Model. Optim. 3 (2015) 1–6 [Google Scholar]
  15. T. Walker, The MQL Handbook (Copyright © 2015 Unist, Inc. V1. 0.7), 2013, p. 1 [Google Scholar]
  16. M. Tomov, M. Kuzinovski, P. Cichosz, Development of mathematical models for surface roughness parameter prediction in turning depending on the process condition, Int. J. Mech. Sci. 113 (2016) 120–132 [CrossRef] [Google Scholar]
  17. A.R. Machodo, J. Wallbank, Effect of extremely low lubricant volumes in machining, Wear 210 (1997) 76–82 [CrossRef] [Google Scholar]
  18. N.R. Dhar, M. Kamaruzzaman, M. Ahmed, Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI 4340 steel, J. Mater. Process. Technol. 172 (2006) 299–304 [CrossRef] [Google Scholar]
  19. N.R. Dhar, M.T. Ahmed, S. Islam, An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel, Int. J. Mach. Tools Manuf. 47 (2007) 748–753 [CrossRef] [Google Scholar]
  20. M.M.A. Khan, M.A.H. Mithu, N.R. Dhar, Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable-oil based cutting fluid, J. Mater. Process. Techhnol. 209 (2009) 5573–5583 [Google Scholar]
  21. M.H. Sadeghi, M.J. Haddad, T. Tawakoli, M. Emami, Minimum quantity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy, Int. J. Adv. Manuf. Technol. 44 (2009) 487–500 [Google Scholar]
  22. T. Tawakoli, M.J. Hadad, M.H. Sadeghi, Influence of oil mist parameters on minimum quantity lubrication-MQL grinding process, Int. J. Mach. Tools Manuf. 50 (2010) 521–531 [CrossRef] [Google Scholar]
  23. M. Emami, M.H. Sadeghi, A.A.D. Sarhan, Investigating the effects of liquid atomization and delivery parameters of minimum quantity lubrication on the grinding process of Al2O3 engineering ceramics, J. Manuf. Process. 15 (2013) 374–388 [CrossRef] [Google Scholar]
  24. A. Saini, S. Dhiman, R. Sharma, S. Setia, Experimental estimation and optimization of process parameters under minimum quantity lubrication and dry turning of AISI 4340 with different carbide inserts, J. Mech. Sci. Technol. 28 (2014) 2307–2318 [Google Scholar]
  25. A.S.S. Balan, L. Vijayaraghavan, R. Krishnamurthy, Minimum quantity lubricated grinding of inconel 751 alloy, Mater. Manuf. Process. 28 (2013) 430–435 [CrossRef] [Google Scholar]
  26. A. Attanasio, M. Gelfi, C. Giardini, C. Remino, Minimal quantity lubrication in turning: effect on tool wear, Int. J. Sci. Technol. Frict., Lubr. Wear 260 (2006) 333–338 [Google Scholar]
  27. P.B. Patole, V.V. Kulkarni, Experimental investigation and optimization of cutting parameters with multi response characteristics in MQL turning of AISI 4340 using nano fluid, Cogent Eng. (Taylor and Francis group) 4 (2017) 1303956 [Google Scholar]
  28. P.B. Patole, V.V. Kulkarni, Optimization of process parameters based on surface roughness and cutting force in MQL turning of AISI 4340 using nano fluid, in: Materials Today Procedings: PMME, 2016 [Google Scholar]
  29. N. Mandal, B.M. Doloi, B. Mondal, Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and regression analysis, Measurement 44 (2011) 2149–2155 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.