Open Access
Review
Issue
Manufacturing Rev.
Volume 5, 2018
Article Number 6
Number of page(s) 20
DOI https://doi.org/10.1051/mfreview/2018005
Published online 01 June 2018
  1. L. Nagdeve, V.K. Jain, J. Ramkumar, Differential finishing of freeform surfaces (Knee joint) using R-MRAFF process & negative replica as a fixture, Mach. Sci. Technol. Int. J. (2017) 1–25 DOI: 10.1080/10910344.2017.1402929 [Google Scholar]
  2. L. Nagdeve, V.K. Jain, J. Ramkumar, Preliminary investigations into nano-finishing of freeform surface (femoral component) using inverse replica fixture, Int. J. Adv. Manuf. Technol. (2017) 1–12 DOI: 10.1007/s00170-017-1459-7 [Google Scholar]
  3. A. Lasemi, D. Xue, P.A. Gu, Freeform surface manufacturing approach by integration of inspection and tool path generation, Int. J. Prod. Res. 50 (2012) 6709–6725 [CrossRef] [Google Scholar]
  4. A. Lasemi, D. Xue, P.A. Gu, Recent development in CNC machining of freeform surfaces: a state-of-the-art review, CAD Comput. Aided Des. 42 (2010) 641–654 [CrossRef] [Google Scholar]
  5. V.K. Jain, Nanofinishing science and technology: basic and advanced finishing and polishing processes, CRC Press, New York 2016, 327 p [Google Scholar]
  6. D.F. Dalury et al., Why are total knee arthroplasties being revised ? J. Arthroplast. 28 (2013) 120–121 [CrossRef] [Google Scholar]
  7. T.G. Mathia, P. Pawlus, M. Wieczorowski, Recent trends in surface metrology, Wear 271 (2011) 494–508 [CrossRef] [Google Scholar]
  8. ASTM standard: F 2083 -11 standard specifications for total knee prosthesis, 1–9 DOI:10.1520/ F2083–11. 2 [Google Scholar]
  9. Z. Zhong, T. Nakagawa, New grinding methods for aspheric mirrors with large curvature radii, CIRP Ann. Manuf. Technol. 41 (1992) 335–338 [CrossRef] [Google Scholar]
  10. J. Zhao et al., A new method of automatic polishing on curved aluminium alloy surfaces at constant pressure, Int. J. Mach. Tools Manuf. 35 (1994) 1683–1692 [CrossRef] [Google Scholar]
  11. M.C. Shaw, Precision finishing, CIRP Ann. Manuf. Technol. 44 (1995) 343–348 [CrossRef] [Google Scholar]
  12. R. Balasubramaniam, R.V. Sarepaka, S. Subbiah, Micro and nano manufacturing series-diamond turn machining: theory and practice, CRC Press (Taylor & Francis Group), New York 2017, 160 p [Google Scholar]
  13. Z. Pan, Y. Feng, S.Y. Liang, Material microstructure affected machining: a review, Manuf. Rev. 4 (2017) 1–12 [Google Scholar]
  14. I. Hilerio, T. Mathia, C. Alepee, 3D measurements of the knee prosthesis surfaces applied in optimizing of manufacturing process, Wear 257 (2004) 1230–1234 [CrossRef] [Google Scholar]
  15. H.Y. Tam, M. Hua, L. Zhang, Aspheric surface finishing by fixed abrasives, Int. J. Adv. Manuf. Technol. 34 (2007) 483–490 [CrossRef] [Google Scholar]
  16. I. Lazoglu, C. Manav, Y. Murtezaoglu, Tool path optimization for free form surface machining, CIRP Ann. Manuf. Technol. 58 (2009) 101–104 [CrossRef] [Google Scholar]
  17. B.J. Plichta, Grinding and finishing of sculptured surfaces using an innovative multi tool head with independent pneumatic drive, J. Mach. Eng. 12 (2012) 7–14 [Google Scholar]
  18. N. Umehara, R. Komanduri, Magnetic fluid grinding of HIP-Si3N4 rollers, Wear 192 (1996) 85–93 [CrossRef] [Google Scholar]
  19. T. Kuriyagawa, M.S.S. Zahmaty, K. Syoji, A new grinding method for aspheric ceramic mirrors, J. Mater. Process. Technol. 62 (1996) 387–392 [CrossRef] [Google Scholar]
  20. B. Nowicki, M. Szafarczyk, The new method of free form surface honing, Ann. CIPR 42 (1993) 425–428 [Google Scholar]
  21. R. Dynarowski, B. Nowicki, Investigation on non-conventional honing of sculptured surfaces for parts made of alloy steel, J. Mater. Process. Technol. 109 (2001) 270–276 [CrossRef] [Google Scholar]
  22. E. Brinksmeier, O. Riemer, A. Gessenharter, Finishing of structured surfaces by abrasive polishing, Precis. Eng. 30 (2006) 325–336 [CrossRef] [Google Scholar]
  23. F.J. Shiou, C.C.A. Chen, W.T. Li, Automated surface finishing of plastic injection mold steel with spherical grinding and ball burnishing processes, Int. J. Adv. Manuf. Technol. 28 (2006) 61–66 [CrossRef] [Google Scholar]
  24. F.J. Shiou, C.H. Chen, Freeform surface finish of plastic injection mold by using ball-burnishing process, J. Mater. Process. Technol. 140 (2003) 248–254 [CrossRef] [Google Scholar]
  25. OTEC prazisionsfinish GmbH, (http:/www.oteccusa.com/brochure.pdfs/Medical brouchure.pdf.) [Google Scholar]
  26. Rosler (http:/etypo3p.rosler.com/blaetterkatalog/blaetterkatalog/pdf/ complete.pdf [Google Scholar]
  27. Y. Song, C.H. Park, T. Moriwaki, Mirror finishing of Co-Cr-Mo alloy using elliptical vibration cutting, Precis. Eng. 34 (2010) 784–789 [CrossRef] [Google Scholar]
  28. R.H.M. Jafar, J.K. Spelt, M. Papini, Surface finishing of micro-channels using low kinetic energy abrasives, Int. J. Mech. Eng. Mechatron. 2 (2014) 43–50 [Google Scholar]
  29. H. Huang et al., Robotic grinding and polishing for turbine-vane overhaul, J. Mater. Process. Technol. 127 (2002) 140–145 [CrossRef] [Google Scholar]
  30. H.Y. Tam, O.C.H. Lui, A.C.K. Mock, Robotic polishing of free-form surfaces using scanning paths, J. Mater. Process. Technol. 95 (1999) 191–200 [CrossRef] [Google Scholar]
  31. H. Weule, D. Spath, U. Schauer, Robot assisted finishing of dies and molds with automated quality control, Prod. Eng. 112 (1994) 229–232 [Google Scholar]
  32. Y. Mizugaki et al., Development of metal-mold polishing robot system with contact pressure control using CAD/CAM data, CIRP Ann. Manuf. Technol. 39 (1990) 523–526 [CrossRef] [Google Scholar]
  33. H. Weule, S. Timmerman, Automation of the surface finishing in the manufacturing of dies and molds, CIRP Ann. Manuf. Technol. 39 (1990) 299–303 [CrossRef] [Google Scholar]
  34. G.B. Richard et al., Novel automated process for aspheric surface, Proc. SPIE 2000 Curr. Dev. Lens Des. Opt. Syst. Eng. 4093 (2000) 445–450 [Google Scholar]
  35. J. Zhao et al., Oblique ultrasonic polishing method by robot for free-form surfaces, Int. J. Mach. Tools Manuf. 40 (2000) 795–808 [CrossRef] [Google Scholar]
  36. C. Brecher et al., Development of a force controlled orbital polishing head for free form surface finishing, Prod. Eng. 4 (2010) 269–277 [CrossRef] [Google Scholar]
  37. G. Elber, Freeform surface region optimization for 3-axis and 5-axis milling, Comput. Aided Des. 27 (1995) 465–470 [CrossRef] [Google Scholar]
  38. J.S. Chen, Y.K. Huang, M.S. Chen, A study of the surface scallop generating mechanism in the ball-end milling process, Int. J. Mach. Tools Manuf. 45 (2005) 1077–1084 [CrossRef] [Google Scholar]
  39. C. Brecher et al., NURBS based ultra-precision free-form machining, CIRP Ann. Manuf. Technol. 55 (2006) 547–550 [CrossRef] [Google Scholar]
  40. R. Baptista, J.F.A. Simões, Three and five axes milling of sculptured surfaces, J. Mater. Process. Technol. 103 (2000) 398–403 [CrossRef] [Google Scholar]
  41. J.H. Ahn et al., Intelligently automated polishing for high quality surface formation of sculptured die, J. Mater. Process. Technol. 130 (2002) 339–344 [CrossRef] [Google Scholar]
  42. J.H. Ahn et al., Development of a sensor information integrated expert system for optimizing die polishing, Robot. Comput. Integr. Manuf. 17 (2001) 269–276 [CrossRef] [Google Scholar]
  43. A. Walker et al., New results from the Precessions polishing process scaled to larger sizes, Proc. SPIE 5494 (2004) 71–80 DOI: 10.1117/12.553044 [CrossRef] [Google Scholar]
  44. A. Walker et al., The Precessions tooling for polishing and figuring flat, spherical and aspheric surfaces, Opt. Express 11 (2003) 958–964 [CrossRef] [Google Scholar]
  45. L. Blunt et al., The application of optics polishing to free form knee implants, in: Proceedings of the 6th Euspen International Conference-Baden bei, Wien, 2006, pp. 1–4 [Google Scholar]
  46. P. Charlton, L. Blunt, Surface and form metrology of polished freeform biological surfaces, Wear 264 (2008) 394–399 [CrossRef] [Google Scholar]
  47. C.F. Cheung et al., Analysis of surface generation in the ultraprecision polishing of freeform surfaces, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224 (2010) 59–73 [CrossRef] [Google Scholar]
  48. A. Denkena, J. Köhler, M.V.D. Vander, A roughness model for the machining of biomedical ceramics by toric grinding pins, CIRP J. Manuf. Sci. Technol. 6 (2013) 22–33 [CrossRef] [Google Scholar]
  49. A. Turger et al., Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants, Biomed. Eng. Online 12 (2013) 1–17 [CrossRef] [Google Scholar]
  50. A. Curodeau, E. Sachs, S. Caldarise, Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell, J. Biomed. Mater. Res. 53 (2000) 525–535 [CrossRef] [Google Scholar]
  51. E.P. Koumoulos, E. Gkartzou, C.A. Charitidis, Additive (nano) manufacturing perspectives: the use of nanofillers and tailored materials, Manuf. Rev. 12 (2017) 1–9 [Google Scholar]
  52. J. Nelson, Non-axisymmetric mirrors produced by stressed mirror polishing, Precis. Eng. 3 (1981) 7–10 [CrossRef] [Google Scholar]
  53. S.S. Cho, Y.K. Ryu, S.Y. Lee, Curved surface finishing with flexible abrasive tool, Int. J. Mach. Tools Manuf. 42 (2002) 229–236 [CrossRef] [Google Scholar]
  54. J.P. Huissoon et al., Automated polishing of die steel surfaces, Int. J. Adv. Manuf. Technol. 19 (2002) 285–290 [CrossRef] [Google Scholar]
  55. J.Y. Choi, H.D. Jeong, A study on polishing of molds using hydrophilic fixed abrasive pad, Int. J. Mach. Tools Manuf. 44 (2004) 1163–1169 [CrossRef] [Google Scholar]
  56. X. Wu, Y. Kita, K. Ikoku, New polishing technology of free form surface by grinding center, J. Mater. Process. Technol. 187 (2007) 81–84 [CrossRef] [Google Scholar]
  57. K.K. Kar et al., Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process, J. Mater. Process. Technol. 209 (2009) 2212–2221 [CrossRef] [Google Scholar]
  58. V.S. Sooraj, V. Radhakrishnan, Fine finishing of internal surfaces using elastic abrasives, Int. J. Adv. Manuf. Technol. 73 (2014) 1495–1509 [CrossRef] [Google Scholar]
  59. K. Przyklenk, Abrasive flow machining—a process for surface finishing and deburring of workpieces with a complicated shape by means of abrasive laden media, Adv Nontradit. Mach. PED ASME 22 (1986) 101–110 [Google Scholar]
  60. L.J. Rhoades, Abrasive flow machining, Manuf. Eng. 11 (1988) 75–78 [Google Scholar]
  61. L. Rhoades, Abrasive flow machining: a case study, J. Mater. Process. Technol. 28 (1991) 107–116 [CrossRef] [Google Scholar]
  62. T.R. Loveless, R.E. Williams, K.P. Rajurkar, A study of the effects of abrasive-flow finishing on various machined surfaces, J. Mater. Process. Technol. 47 (1994) 133–151 [CrossRef] [Google Scholar]
  63. Extrude Hone Corporation GmbH, (Company name) https://extrudehone.com/products/abrasive-flow-machining-afm [Google Scholar]
  64. H.J. Tzeng et al., Self-modulating abrasive medium and its application to abrasive flow machining for finishing micro channel surfaces, Int. J. Adv. Manuf. Technol. 32 (2007) 1163–1169 [CrossRef] [Google Scholar]
  65. A.C. Wang et al., Uniform surface polished method of complex holes in abrasive flow machining, Trans. Nonferrous Metal. Soc. China (English Edition) 19 (2009) s250–s257 [CrossRef] [Google Scholar]
  66. V.K. Jain et al., Investigations into abrasive flow finishing of complex workpieces using FEM, Wear 267 (2011) 71–80 [CrossRef] [Google Scholar]
  67. M.R. Sarkar, V.K. Jain, J. Ramkumar, Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process, Int. J. Mach. Tools Manuf. 51 (2011) 947–957 [CrossRef] [Google Scholar]
  68. J.K. Sambharia, H.S. Mali, Characterisation and performance evaluation of developed alternative polymer abrasive gels for abrasive flow finishing process, Int. J. Precis. Technol. 5 (2015) 185–200 [CrossRef] [Google Scholar]
  69. S. Singh et al., Modelling of nano-finishing forces and surface roughness in abrasive flow finishing process using rheological properties, Int. J. Precis. Technol. 6 (2016) 123–141 [CrossRef] [Google Scholar]
  70. M.S. Cheema et al., Developments in abrasive flow machining: a review on experimental investigations using abrasive flow machining variants and media, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226 (2012) 1951–1962 [CrossRef] [Google Scholar]
  71. M. Sarkar, V.K. Jain, Development of a flexible abrasive tool for nano finishing of complex surfaces, in: Development of a Flexible Abrasive Tool for Nano Finishing of Complex Surfaces, Vision for Future (MVF2013) Conference at Indian Institute of Technology, Guwahati, India, 2013 [Google Scholar]
  72. M. Sarkar, V.K. Jain, Nanofinishing of freeform surfaces using abrasive flow finishing process, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231 (2017) 1501–1505 [CrossRef] [Google Scholar]
  73. S.D. Jacobs, in: T. Kasai (Ed.), Optical Fabrication and Testing, SPIE, Bellingham, WA 1995, pp. 372–382 [Google Scholar]
  74. S.D. Jacobs, Magnetorheological finishing: a deterministic process for optics manufacturing, in: T. Kasai (Ed.), Proceedings of the International Conference on Optical fabrication and testing, Tokyo, Japan, 1995, pp. [Google Scholar]
  75. W.I. Kordonski, S.D. Jacobs, D. Golini, Technical digest series, in: Optical fabrication and testing, Optical Society of America, Washington, DC, 1996, pp. 146–149 [Google Scholar]
  76. H. Cheng, Z. Feng, Y. Wang, Magnetorheological finishing of SiC aspheric mirrors, Mater. Manuf. Process. 20 (2005) 917–931 [CrossRef] [Google Scholar]
  77. H.B. Cheng, Y. Yam, Y.T. Wang, Experimentation on MR fluid using a 2-axis wheel tool, J. Mater. Process. Technol. 209 (2009) 5254–5261 [CrossRef] [Google Scholar]
  78. J. Seok, Y.J. Kim, K.I. Jang, A study on the fabrication of curved surfaces using magnetorheological fluid finishing, Int. J. Mach. Tools Manuf. 47 (2007) 2077–2090 [CrossRef] [Google Scholar]
  79. M. Tricard, P.R. Dumas, D. Golini, SOI wafer polishing with magnetorheological finishing (MRF), SOI Conf. 3/6 (2003) 127–129 [Google Scholar]
  80. M. Tricard, W.I. Kordonski, A.B. Shorey, Magnetorheological jet finishing of conformal, freeform and steep concave optics, CIRP Ann. Manuf. Technol. 55 (2006) 309–312 [CrossRef] [Google Scholar]
  81. D.C. Harris, History of magnetorheological finishing, window and dome technologies and materials XII, Int. Soc. Opt. Photonics 8016 (2011) 80160N [Google Scholar]
  82. A.M. Sidpara, V.K. Jain, Nanofinishing of freeform surfaces of prosthetic knee joint implant, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226 (2012) 1833–1846 [CrossRef] [Google Scholar]
  83. P. Baghel et al., Preliminary investigation into finishing of artificial dental crown, Int. J. Precis. Technol. 5 (2015) 229–245 [CrossRef] [Google Scholar]
  84. K.I. Jang, D.Y. Kim, S. Maeng, Deburring microparts using a magnetorheological fluid, Int. J. Mach. Tools Manuf. 53 (2012) 170–175 [CrossRef] [Google Scholar]
  85. A. Singh, S. Jha, P.M. Pandey, Design and development of nanofinishing process for 3D surfaces using ball end MR finishing tool, Int. J. Mach. Tools Manuf. 51 (2011) 142–151 [CrossRef] [Google Scholar]
  86. A. Singh, S. Jha, P.M. Pandey, Nanofinishing of a typical 3D ferromagnetic workpiece using ball end magnetorheological finishing process, Int. J. Mach. Tools Manuf. 63 (2012) 21–31 [CrossRef] [Google Scholar]
  87. M.S. Niranjan, S. Jha, Optimum selection of machining parameters in ball end magnetorheological finishing process, Int. J. Precis. Technol. 5 (2015) 217–228 [CrossRef] [Google Scholar]
  88. A.K. Singh, S. Jha, P.M. Pandey, Performance evaluation of improved ball end magnetorheological finishing processes, World Academy of Science, Engineering and Technology, Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 6 (2012) 356–360 [Google Scholar]
  89. H. Suzuki, S. Kodera, S. Hara, Magnetic field-assisted polishing application to curved surface, Precision Engineering Butterworth & Co (Pvt) Ltd, 1989, pp. 197–202 [Google Scholar]
  90. T.S. Bedi, A.K. Singh, Magnetorheological methods for nanofinishing a review, Part. Sci. Technol. 34 (2016) 412–422 [CrossRef] [Google Scholar]
  91. J.D. Kim, I.H. Noh, Magnetic polishing of three dimensional die and mold surfaces, Int. J. Adv. Manuf. Technol. 33 (2007) 18–23 [CrossRef] [Google Scholar]
  92. J.D. Kim, M.S. Choi, Study on magnetic polishing of free-form surfaces, Int. J. Mach. Tools Manuf. 37 (1997) 1179–1187 [CrossRef] [Google Scholar]
  93. P.S. Pa, Design of a magnetic-assistance super finish module for freeform machining, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 27 (2009) 1221 [CrossRef] [Google Scholar]
  94. P.S. Pa, Magnetic-assistance finishing processes in freeform surfaces, J. Mater. Eng. Perform. 18 (2009) 99–405 [Google Scholar]
  95. P.S. Pa, Super finishing with ultrasonic and magnetic assistance in electrochemical micro-machining, Electrochim. Acta 54 (2009) 6022–6027 [CrossRef] [Google Scholar]
  96. M. Fox, K. Agrawal, T. Shinmura, Magnetic abrasive finishing of rollers, CIRP Ann. Manuf. Technol. 43 (1994) 181–184 [CrossRef] [Google Scholar]
  97. H. Yamaguchi, T. Shinmura, A. Kobayashi, Development of an internal magnetic abrasive finishing process for non-ferromagnetic complex shaped tubes, Jpn. Soc. Mech. Eng. 44 (2001) 275–281 [Google Scholar]
  98. H. Yamaguchi, A. Graziano, Surface finishing of cobalt chromium alloy femoral knee components, CIRP Ann. Manuf. Technol. 63 (2014) 309–312 [CrossRef] [Google Scholar]
  99. M.N. Houshi, A comprehensive review on magnetic abrasive finishing process, Adv. Eng. Forum 18 (2016) 1–20 [CrossRef] [Google Scholar]
  100. P.K. Basera, V.K. Jain, Nano-finishing of aircraft blade bearing by magnetic abrasive finishing (MAF) process, 2nd Annual International Conference on Material Science, Metals and Manufacturing (M3 2012), 2012, pp. 129–136 [Google Scholar]
  101. P.K. Basera, V.K. Jain, Reducing downtime of repairing for taper roller bearing by magnetic abrasive finishing (MAF) process, Int. J. Innov. Manag. Technol. 4 (2013) 130–136 [Google Scholar]
  102. V.K. Jain et al., Nano-finishing techniques: a review, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 226 (2012) 327–346 [CrossRef] [Google Scholar]
  103. V.K. Jain, Abrasive-based nano-finishing techniques: an overview, Mach. Sci. Technol. 12 (2008) 257–294 [CrossRef] [Google Scholar]
  104. V.K. Jain, Advance finishing processes, in: Advanced machining processes, Allied publishers Ltd New Delhi, India, 2002, pp. 54–97 [Google Scholar]
  105. S. Jha, V.K. Jain, Nanofinishing techniques, Micromanuf. Nanotechnol. 11 (2006) 171–195 [CrossRef] [Google Scholar]
  106. V.V. Shanbhag et al., Modelling for evaluation of surface roughness in magnetic abrasive finishing of flat surfaces, Int. J. Precis. Technol. 6 (2016) 159–170 [CrossRef] [Google Scholar]
  107. S. Jha, V.K. Jain, Design and development of the magnetorheological abrasive flow finishing (MRAFF) process, Int. J. Mach. Tools Manuf. 44 (2004) 1019–1029 [CrossRef] [Google Scholar]
  108. M. Das, V.K. Jain, P.S. Ghoshdastidar, Nano-finishing of stainless-steel tubes using rotational magnetorheological abrasive flow finishing process, Mach. Sci. Technol. 14 (2010) 365–389 [CrossRef] [Google Scholar]
  109. M. Das, V.K. Jain, P.S. Ghoshdastidar, Nanofinishing of flat workpieces using rotational-magnetorheological abrasive flow finishing (R-MRAFF) process, Int. J. Adv. Manuf. Technol. 62 (2012) 405–420 [CrossRef] [Google Scholar]
  110. S. Kumar, V.K. Jain, A. Sidpara, Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process, Precis. Eng. 42 (2015) 165–178 [CrossRef] [Google Scholar]
  111. A. Sidpara, V.K. Jain, G.S. Lodha, Finishing of synchrotron beamline mirrors, 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), IIT Guwahati, Assam, India, 2014, pp. 1–6 [Google Scholar]
  112. N.K. Jain et al., State of the art review of electrochemical honing of internal cylinders and gears, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 223 (2009) 665–681 [CrossRef] [Google Scholar]
  113. S. Pathak, N.K. Jain, I.A. Palani, Effect of honing gear hardness on surface quality and micro-geometry improvement of straight bevel gear in PECH process, Int. J. Adv. Manuf. Technol. 85 (2016) 2197–2205 [CrossRef] [Google Scholar]
  114. V.K. Jain et al., Chemo-mechanical magneto-rheological finishing (CMMRF) of silicon for microelectronics applications, CIRP Ann. Manuf. Technol. 59 (2010) 323–328 [CrossRef] [Google Scholar]
  115. L. Nagdeve, V.K. Jain, J. Ramkumar, Experimental investigations into nano-finishing of freeform surfaces using negative replica of the knee joint, Procedia CIRP 42 (2016) 793–798 [CrossRef] [Google Scholar]
  116. R.K. Jain, Modeling and simulation of abrasive flow machining process, PhD thesis, Indian Institute of Technology, Kanpur, India, 1999 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.