Open Access
Manufacturing Rev.
Volume 5, 2018
Article Number 7
Number of page(s) 13
Published online 13 June 2018
  1. M. Kok, Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, J. Mater. Process. Technol 161 (2005) 381–387 [CrossRef] [Google Scholar]
  2. H.S. Lee, et al., The fabrication process and mechanical properties of SiCp/Al-Si metal matrix composites for automobile air-conditioner compressor pistons, J. Mater. Process. Technol. 113 (2001) 202–208 [CrossRef] [Google Scholar]
  3. R. Zhang, L. Gao, J.K. Guo, Thermodynamic behaviour of copper-coated silicon carbide particles during conventional heating and spark plasma sintering, J. Am. Ceram. 86 (2003) 1446–1448 [CrossRef] [Google Scholar]
  4. P. Rohatgi, R. Asthana, S. Das, Solidification, structures, and properties of cast metal-ceramic particle composites, Int. Met. Rev. 31 (1986) 115–139 [CrossRef] [Google Scholar]
  5. G. Ramu, R. Bauri, Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-SiCp composites, Mater. Des. 30 (2009) 3554–3559 [CrossRef] [Google Scholar]
  6. A.A. Mazen, A.Y. Ahmed, Mechanical behavior of Al-Al2O3 MMC manufactured by PM techniques part I—scheme I processing parameters, J. Mater. Eng. Perform. 7 (1998) 393–401 [CrossRef] [Google Scholar]
  7. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites − a review, J. Mater. Sci. 26 (1991) 1137–1156 [CrossRef] [Google Scholar]
  8. Y.B. Liu, et al., Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques, J. Mater. Sci. 29 (1994) 1999–2007 [CrossRef] [Google Scholar]
  9. J.M. Torralba, C.E. da Costa, F. Velasco, P/M aluminum matrix composites: an overview, J. Mater. Process. Technol. 133 (2003) 203–206 [CrossRef] [Google Scholar]
  10. J.W. Kaczmar, K. Pietrzak, W. Włosiński, The production and application of metal matrix composite materials, J. Mater. Process. Technol. 106 (2000) 58–67 [CrossRef] [Google Scholar]
  11. S. Preetkanwal, Fabrication and machining of metal matrix composites: a review, Mater. Manuf. Process. 31 (2016) 553–573 [CrossRef] [Google Scholar]
  12. A. Slipenyuk, et al., The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC, Mater. Sci. Eng. A 381 (2004) 165–170 [CrossRef] [Google Scholar]
  13. M. Schwartz, Composite materials: processing fabrication and applications, II, Prentice Hall PTR, 1997 [Google Scholar]
  14. M. Rahimian, et al., The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy, J. Mater. Process. Technol. 209 (2009) 5387–5393 [CrossRef] [Google Scholar]
  15. R.M. German, Powder metallurgy of iron and steel, Wiley, USA, 1998 [Google Scholar]
  16. A.K. Bodukuri, et al., Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties, Perspect. Sci. 8 (2016) 428–431 [CrossRef] [Google Scholar]
  17. H.S. Chen, et al., Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy, J. Alloy. Compd. 730 (2018) 342–351 [CrossRef] [Google Scholar]
  18. A. Feest, Metal powder report, (1992) 4045 [Google Scholar]
  19. M. Vedani, E. Gariboldi, Damage and ductility of particulate and short-fibre Al Al2O3 composites, Acta Mater. 44 (1996) 3077–3088 [CrossRef] [Google Scholar]
  20. J. Jiang, B. Dodd, Workability of aluminium-based metal-matrix composites in cold compression, Composites 26 (1995) 62–66 [CrossRef] [Google Scholar]
  21. K. Asano, Properties of squeeze cast Al-bas composite materials strenthened with delta alumina fibers, Proceedings of 19th Congress of International Council for the Aeronautical Sciences, 2, 1994, 1814–1823 [Google Scholar]
  22. A.U. Padmavathi, Densification, microstructure and properties of supersolidus liquid phase sintered 6711 Al-Sic metal matrix composites, Sci. Sinter. 42 (2010) 363–382 [CrossRef] [Google Scholar]
  23. T.J.A. Doel, P. Bowen, Tensile properties of particulate-reinforced metal matrix composites, Compos. Part A: Appl. Sci. Manuf. 27 (1996) 655–665 [CrossRef] [Google Scholar]
  24. B.Q. Han, K.C. Chan, Superplastic deformation mechanisms of particulate reinforced aluminium alloy matrix composites, Mater. Sci. Eng. 212 (1996) 256–264 [CrossRef] [Google Scholar]
  25. P.K. Rohatgi, S. Ray, Y. Liu, Tribological properties of metal matrix-graphite particle composites, Int. Mater. Rev. 37 (1992) 129–152 [CrossRef] [Google Scholar]
  26. H.J. Rack, Fabrication of high performance powder-metallurgy aluminum matrix composites, Adv. Mater. Manuf. Process. 3 (1988) 327–358 [Google Scholar]
  27. A.D. Rosato, T. Vreeland, F.B. Prinz, Manufacture of powder compacts, Int. Mater. Rev. 36 (1991) 45–79 [CrossRef] [Google Scholar]
  28. Z.R. Hesabi, A. Simchi, S.M.S. Reihani, Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites, Mater. Sci. Eng. A 428 (2006) 159–168 [CrossRef] [Google Scholar]
  29. R. Xu, et al., Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling, Compos. Part A: Appl. Sci. Manuf. 96 (2017) 57–66 [CrossRef] [Google Scholar]
  30. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1–184 [Google Scholar]
  31. A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder, Compos. Part A: Appl. Sci. Manuf. 38 (2007) 646–650 [CrossRef] [Google Scholar]
  32. A.M.K. Esawi, et al., Fabrication and properties of dispersed carbon nanotube-aluminum composites, Mater. Sci. Eng. A 508 (2009) 167–173 [CrossRef] [Google Scholar]
  33. M. Rahimian, N. Parvin, N. Ehsani, The effect of production parameters on microstructure and wear resistance of powder metallurgy Al-Al2O3 composite, Mater. Des. 32 (2011) 1031–1038 [CrossRef] [Google Scholar]
  34. A.K. Bodukuri, et al., Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties, Perspect. Sci. 8 (2016) 428–431 [CrossRef] [Google Scholar]
  35. S. Scudino, et al., Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy, Acta Mater. 57 (2009) 2029–2039 [CrossRef] [Google Scholar]
  36. M. Rahimian, et al., The effect of sintering temperature and the amount of reinforcement on the properties of Al-Al2O3 composite, Mater. Des. 30 (2009) 3333–3337 [CrossRef] [Google Scholar]
  37. A.J. Albaaji, et al., Effect of ball-milling time on mechanical and magnetic properties of carbon nanotube reinforced FeCo alloy composites, Mater. Des. 122 (2017) 296–306 [CrossRef] [Google Scholar]
  38. E.I. Salama, A. Abbas, A.M.K. Esawi, Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites, Compos. Part A: Appl. Sci. Manuf. 99 (2017) 84–93 [CrossRef] [Google Scholar]
  39. H. Wang, et al., Characterization of a powder metallurgy SiC/Cu-Al composite, J. Mater. Process. Technol. 197 (2008) 43–48 [CrossRef] [Google Scholar]
  40. V.G. Karayannis, A.K. Moutsatsou, Fabrication of MMCs from metal and alloy powders produced from scrap, J. Mater. Process. Technol. 171 (2006) 295–300 [CrossRef] [Google Scholar]
  41. M. Rosso, Ceramic and metal matrix composites: Routes and properties, J. Mater. Process. Technol. 175 (2006) 364–375 [CrossRef] [Google Scholar]
  42. C.P. Samal, J.S. Parihar, D. Chaira, The effect of milling and sintering techniques on mechanical properties of Cu-graphite metal matrix composite prepared by powder metallurgy route, J. Alloy. Compd 569 (2013) 95–101 [CrossRef] [Google Scholar]
  43. B. Venkatesh, Mechanical properties of metal matrix composites(Al/SiCp) particles produced by powder metallurgy, Int. J. Eng. Res. Gen. Sci. 3 (2015) [Google Scholar]
  44. V. Jeevan et al., Compaction, sintering and mechanical properties of Al–SiCp composites, Int. J. Mech. Eng. Technol. 3 (2012) 565–573 [Google Scholar]
  45. S. Azadehranjbar, F. Karimzadeh, M.H. Enayati, Development of NiFe-CNT and Ni3Fe-CNT nanocomposites by mechanical alloying, Adv. Powder Technol. 23 (2012) 338–342 [CrossRef] [Google Scholar]
  46. H. Momeni, H. Razavi, S.G. Shabestari, Effect of supersolidus liquid phase sintering on the microstructure and densification of the Al-Cu-Mg prealloyed powder, Iran. J. Mater. Sci. Eng. 8 (2011) 10–17 [Google Scholar]
  47. S.I. Andersen, H. Lilholt, O.B. Pedersen, Mechanical and physical behaviour of metallic and ceramic composites, Proceedings of the 9th Risø International Symposium on Metallurgy and Materials Science, 5–9 September, Risø National Laboratory, 1988 [Google Scholar]
  48. D.J. Lloyd, H.P. Lagacé, A.D. Mcleod, Interfacial phenomena in metal matrix composites, in: H. Ishida (Ed.), Controlled Interphases in Composite Materials: Proceedings of the Third International Conference on Composite Interfaces (ICCI-III) held on May 21-24, Springer, Dordrecht, Netherlands 1990, pp. 359–376 [Google Scholar]
  49. R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng. 81 (1986) 175–187 [Google Scholar]
  50. M.Y. Wu, O.D. Sherby, Superplasticity in a silicon carbide whisker reinforced aluminum alloy, Scr. Metall. 18 (1984) 773–776 [CrossRef] [Google Scholar]
  51. R. German, Sintering theory and practice, Wiley, New York, 1996 [Google Scholar]
  52. M.A. Baghchesara, Microstructure and Mechanical Properties of Aluminium Alloy Matrix Composite Reinforced with Nano MgO Particles, Asian J. Chem. 22 (2010) 6769–6777 [Google Scholar]
  53. K.H. Min, et al., Sintering characteristic of Al2O3-reinforced 2xxx series Al composite powders, J. Alloy. Compd. 400 (2005) 150–153 [CrossRef] [Google Scholar]
  54. J.B. Fogagnolo, et al., The effects of mechanical alloying on the compressibility of aluminium matrix composite powder, Mater. Sci. Eng. A 355 (2003) 50–55 [CrossRef] [Google Scholar]
  55. V.V. Dabhade, T.R.R. Mohan, P. Ramakrishnan, Sintering behavior of titanium-titanium nitride nanocomposite powders, J. Alloy. Compd 453 (2008) 215–221 [CrossRef] [Google Scholar]
  56. H. Asgharzadeh, A. Simchi, Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites, Powder Metall. 52 (2009) 28–35 [CrossRef] [Google Scholar]
  57. N. Showaiter, M. Youseffi, Compaction, sintering and mechanical properties of elemental 6061 Al powder with and without sintering aids, Mater. Des. 29 (2008) 752–762 [CrossRef] [Google Scholar]
  58. R. Yamanoglu, et al., Sintering and microstructure characteristics of 42CrMo4 steel processed by spark plasma sintering, Met. Mater. Int. 19 (2013) 1029–1034 [CrossRef] [Google Scholar]
  59. R. Yamanoglu, W. Bradbury, E. Karakulak, E.A. Olevsky, R.M. German, Characterisation of nickel alloy powders processed by spark plasma sintering, Powder Metall (2014) [Google Scholar]
  60. A. Teber, F. Schoenstein, F. Tetard, M. Abdellaoui, N. Jouini, Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application, J. Refract. Met. 30 (2012) 64–70 [CrossRef] [Google Scholar]
  61. Y. Ridvan, E.A. Olevsky, Consolidation of Al-nanoSiC composites by spark plasma sintering, Int. J. Mater. Mech. Manuf. 4 (2016) [Google Scholar]
  62. M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, T. Kessel, Sintering applications, in: B. Ertu (Ed.), InTech, Croatia, 2013, pp. [Google Scholar]
  63. R.M. German, Liquid phase sintering Plenum Press, New York, 1985, 4–5 p. [Google Scholar]
  64. G.B. Schaffer, T.B. Sercombe, R.N. Lumley, Liquid phase sintering of aluminium alloys, Mater. Chem. Phys. 67 (2001) 85–91 [CrossRef] [Google Scholar]
  65. K.E. Esterling, Phase Transformations in metals and alloys, McGraw-Hill, New York, 1980 [Google Scholar]
  66. E. Saiz, A.P. Tomsia, K. Suganuma, Wetting and strength issues at Al/α-alumina interfaces, J. Eur. Ceram. Soc. 23 (2003) 2787–2796 [CrossRef] [Google Scholar]
  67. G.E. Dieter, Mechanical metallurgy, 3rd edition, McGraw-Hill, 1976 [Google Scholar]
  68. X. Zhang, M.J. Tan, Selection of particulate reinforcement in P/M metal matrix composites, J. Mater. Process. Technol. 63 (1997) 913–917 [CrossRef] [Google Scholar]
  69. K.K.C. Nikhilesh Chawla, Metal matrix composites, Springer, New York, 2006, 88 p [Google Scholar]
  70. P. Tsakiropoulous, Mater. Sci. Eng. A 189 (1994) 285 [CrossRef] [Google Scholar]
  71. Z.W.H. Chao SunMin Song, Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites, J. Mater. Eng. Perform. 20 (2011) 1606–1612 [CrossRef] [Google Scholar]
  72. N. Chawla, J.J. Williams, R. Saha, Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites, J. Light Met. 2 (2002) 215–227 [CrossRef] [Google Scholar]
  73. A.V. Muley, S. Aravindan, I.P. Singh, Nano and hybrid aluminum based metal matrix composites: an overview, Manuf. Rev. 2 (2015) 15 [Google Scholar]
  74. A.E. Nassar, E.E. Nassar, Properties of aluminum matrix Nano composites prepared by powder metallurgy processing, J. King Saud Univ. − Eng. Sci. 29 (2017) 295–299 [Google Scholar]
  75. A.V. Muley, S. Aravindan, I.P. Singh, Mechanical and tribological studies on nano particles reinforced hybrid aluminum based composite, Manuf. Rev. 2 (2015) 26 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.