Open Access
Review
Issue
Manufacturing Rev.
Volume 5, 2018
Article Number 8
Number of page(s) 10
DOI https://doi.org/10.1051/mfreview/2018003
Published online 01 June 2018
  1. A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1-concepts, materials and modellization, Renew. Sustain. Energy Rev. 14 (2010) 31–55 [CrossRef] [Google Scholar]
  2. M. Medrano, A. Gil, I. Martorell, X. Potau, L.F. Cabeza, State of the art on high-temperature thermal energy storage for power generation. Part 2-case studies, Renew. Sustain. Energy Rev. 14 (2010) 56–72 [CrossRef] [Google Scholar]
  3. S. Bellan, A. Cordiviola, S. Barberis, A. Traverso, J. González-Aguilar, M. Romero, Numerical analysis of latent heat storage system with encapsulated phase change material in spherical capsules, Renew. Energy Environ. Sustain. 2 (2017) 3 [CrossRef] [EDP Sciences] [Google Scholar]
  4. M. Graham, E. Shchukina, P. Felix De Castro, D. Shchukin, Nanocapsules containing salt hydrate phase change materials for thermal energy storage, J. Mater. Chem. A 4 (2016) 16906–16912 [CrossRef] [Google Scholar]
  5. D. Platte, U. Helbig, R. Houbertz, G. Sextl, Microencapsulation of salt hydrate melts for phase change applications by surface thiol-michael addition polymerization, Macromol. Mater. Eng. 298 (2013) 67–77 [CrossRef] [Google Scholar]
  6. F. Salaun, E. Devaux, S. Bourbigot, P. Rumeau, Influence of the solvent on the microencapsulation of a hydrated salt, Carbohydr. Polym. 79 (2010) 964–974 [CrossRef] [Google Scholar]
  7. EP 2015 2 119 498 A1, Procedure for microencapsulation of phase change materials by spray-drying [Google Scholar]
  8. S. Ushak, M.J. Cruz, L.F. Cabeza, M. Grágeda, Preparation and characterization of inorganic PCM microcapsules by fluidized bed method, Materials 9 (2016) 24 [CrossRef] [Google Scholar]
  9. W. Su, J. Darkwa, G. Kokogiannakis, Development of microencapsulated phase change material for solar thermal energy storage, Appl. Therm. Eng. 112 (2017) 1205–1212 [CrossRef] [Google Scholar]
  10. US 2011/0259544, Encapsulated phase change apparatus for thermal energy storage [Google Scholar]
  11. US 2012/0055661, High temperature thermal energy storage system [Google Scholar]
  12. US 2015/0284616, Encapsulation of thermal energy storage media [Google Scholar]
  13. N. Maruoka, T. Akiyama, Thermal stress analysis of PCM encapsulation for heat recovery of high temperature waste heat. J. Chem. Eng. Jpn 36 (2003) 794–798 [CrossRef] [Google Scholar]
  14. Y. Hong, S. Ding, W. Wu, J. Hu, A.A. Voevodin, L. Gschwender, Ed. Snyder, L. Chow, M. Su, Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer, Appl. Mater. Interfaces 2 (2010) [CrossRef] [Google Scholar]
  15. P. Chou, C. Chandrasekaran, G.Z. Cao, Sol–gel derived hybrid coatings for corrosion protection, J. Sol–Gel Sci. Technol. 26 (2003) 321–327 [CrossRef] [Google Scholar]
  16. R.B. Figueira, C.J.R. Silva, E.V. Pereira, Organic-inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress, J. Coat. Technol. Res. 12 (2015) 1–35 [CrossRef] [Google Scholar]
  17. M. Liu, W. Saman, F. Bruno, Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renew. Sustain. Energy Rev. 16 (2012) 2118–2132 [CrossRef] [Google Scholar]
  18. B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng. 23 (2003) 251–283 [CrossRef] [Google Scholar]
  19. S. Kuravi, J. Trahan, D. Yogi Goswami, M.M. Rahman, E.K. Stefanakos, Review thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energy Combust. Sci. 39 (2013) 285–319 [CrossRef] [Google Scholar]
  20. M.M. Kenisarin, High-temperature phase change materials for thermal energy storage, Renew. Sustain. Energy Rev. 14 (2010) 955–970 [CrossRef] [Google Scholar]
  21. J.C. Gomez, N. Calvet, A.K. Starace, G.C. Glatzmaier, Ca (NO3)2-NaNO3-KNO3 Molten Salt Mixtures for Direct Thermal Energy Storage Systems in Parabolic Trough Plants, J. Sol. Energy Eng. 135 (2013) [CrossRef] [Google Scholar]
  22. Y. Zheng, W. Zhao, J.C. Sabol, K. Tuzla, S. Neti, A. Oztekin, J.C. Chen, Encapsulated phase change materials for energy storage − characterization by calorimetry, Sol. Energy 87 (2013) 117–126 [CrossRef] [Google Scholar]
  23. T. Vijay Kumar, A. Sadananda Chary, A.M. Awasthi, S. Bhardwaj, S. Narender Reddy, Effect of nano SiO2 on properties of structural, thermal and ionic conductivity of 85.32 [NaNO3]–14.68[Sr(NO3)2] mixed system, Ionics 21 (2015) 1341–1349 [CrossRef] [Google Scholar]
  24. T. Jriri, J. Rogez, C. Bergman, J.C. Mathieu, Thermodynamic study of the condensed phases of NaNO3, KNO3 and CsNO3 and their transitions, Thermochim. Acta, 266 (1995) 147–161 [CrossRef] [Google Scholar]
  25. T. Bauer, D. Laing, R. Tamme, Characterization of sodium nitrate as phase change material, Int. J. Thermophys. 33 (2012) 91–104 [CrossRef] [Google Scholar]
  26. C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Effects of confinement on freezing and melting, J. Phys.: Condens. Matter. 18 (2006) 15–68 [CrossRef] [PubMed] [Google Scholar]
  27. M. Fuensanta, U. Paiphansiri, M.D. Romero-Sánchez, C. Guillem, Á.M. López-Buendía, K. Landfester, Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage, Thermochim. Acta 565 (2013) 95–101 [CrossRef] [Google Scholar]
  28. Q. Guo, T. Wang, Preparation and characterization of sodium sulfate/silica composite as a shape-stabilized phase change material by sol–gel method, Chin. J. Chem. Eng. 22 (2014) 360–364 [CrossRef] [Google Scholar]
  29. R. Benages Vilau, Growth, Morphology and solid state miscibility of alkali nitrates, Doctoral Thesis, University of Barcelona, 2013 [Google Scholar]
  30. Y. Hoshino, T. Utsunomiya, O. Abe, The thermal decomposition of sodium nitrate and the effects of several oxides on the decomposition, Bull. Chem. Soc. Jpn. 54 (1981) 1385–1391 [CrossRef] [Google Scholar]
  31. P. Gimenez, S. Fereres, Effect of heating rates and composition on the thermal decomposition of nitrate based molten salts, Energy Procedia 69 (2015) 654–662 [CrossRef] [Google Scholar]
  32. R.W. Bradshaw, N.P. Siegel, Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems, in: Proceedings of ES2008-54174. Energy Sustainability 2008 August 10–14, Jacksonville, Florida USA, 2008 [Google Scholar]
  33. T. Bauer, D. Laing, U. Kröner, R. Tamme, The 11th International Conference on Thermal Energy Storage − Effstock in Stockholm, Sweden, 2009 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.