Open Access
Review
Issue
Manufacturing Rev.
Volume 5, 2018
Article Number 13
Number of page(s) 16
DOI https://doi.org/10.1051/mfreview/2018010
Published online 23 October 2018
  1. I. Lazoglu, Tool path optimization for free form surface machining, CIRP Ann. Manuf. Technol. 58 (2009) 101–104 [CrossRef] [Google Scholar]
  2. A. Lasemi, Recent development in CNC machining of freeform surfaces: a state-of-the-art review, Comput. Aided Des. 42 (2010) 641–654 [Google Scholar]
  3. J.A. Schey, Introduction to manufacturing processes, Second edition, McGraw Hill, 1987 [Google Scholar]
  4. H. Foellinger, Optimum parameters for dressing process of conventional grinding, in: Proceedings superabrasives'85, 1985, pp. 8–22 [Google Scholar]
  5. C.J. Evans, E. Paul, D.A. Dornfeld, Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, B.A. Mullany, Material removal mechanisms in lapping and polishing, CIRP Ann. 52 (2003) 611–633 [CrossRef] [Google Scholar]
  6. A.J. Troglio, Performance evaluation of multi-stone honing tool by experimental design methods, in: Proc. Int. Honing 2003 Conf, MR03-232, 2003, pp. 1–24 [Google Scholar]
  7. S. Jha, V.K. Jain, Nano-Finishing techniques In: Micromanufacturing and Nanotechnology. Springer, Berlin, Heidelberg (2006) 171–195 [CrossRef] [Google Scholar]
  8. M.P. Groover, Fundamentals of modern manufacturing, Prentice Hall, 1996 [Google Scholar]
  9. N. Taniguchi, Current status in, and future trends of ultraprecision machining and ultrafine material processing, Ann. CIRP 32/2 (1983) 573–582 [CrossRef] [Google Scholar]
  10. Y. Mori, N. Ikawa, K. Sugiyama, Elastic emission machining -stress field and fracture mechanism, Technology Reports of the Osaka University, 28 (1976) pp. 525–534 [Google Scholar]
  11. E.G. Spencer, P.H. Schmidt, Ion beam techniques for device fabrication, J. Vac. Sci. Technol. 8 (1972) S52–S70 [CrossRef] [Google Scholar]
  12. S. Singh, H.S. Shan, P. Kumar, Wear behavior of materials in magnetically assisted abrasive flow machining, J. Mater. Process. Technol. 128 (2002) 155–156 [CrossRef] [Google Scholar]
  13. A. Sadiq, M.S. Shunmugam, Magnetic field analysis and roughness prediction in magnetorheological abrasive honing (MRAH), Mach. Sci. Technol. 13 (2009b) 246–268 [CrossRef] [Google Scholar]
  14. J.D. Kim, Development of a magnetic abrasive jet machining system for internal polishing of circular tubes, J. Mater. Process. Technol. 71 (1997) 384–393 [CrossRef] [Google Scholar]
  15. S. Jha, V.K. Jain, Design and development of magnetorheological abrasive flow finishing process, Int. J. Mach. Tool Manuf. 44 (2004) 1019–1029 [Google Scholar]
  16. G. Yang, B.F. Spencer Jr, J.D. Carlson, M.K. Sain, Large-scale MR fluid dampers: modeling and dynamic performance considerations, Eng. Struct. 24 (2002) 309–323 [CrossRef] [Google Scholar]
  17. M. Das, V.K. Jain, P.S. Ghoshdastidar, Nanofinishing of flat workpieces using rotational-magnetorheological abrasive flow finishing (R-MRAFF) process, Int. J. Adv. Manuf. Technol. 62 (2012) 405–420 [CrossRef] [Google Scholar]
  18. S. Jha, V.K. Jain, R. Komanduri, Effect of extrusion pressure and number of finishing cycles on surface roughness in magnetorheological abrasive flow finishing (MRAFF) process, Int. J. Adv. Manuf. Technol. 33 (2006) 725–729 [Google Scholar]
  19. G.Z. Kremen, Machining time estimation for magnetic abrasive processes, Int. J. Prod. Res. 32 (1994) 2817–2825 [CrossRef] [Google Scholar]
  20. V.K. Jain, P. Kumar, P.K. Behera, S.C. Jayswal, Effect ofworking gap and circumferential speed on the performance of magnetic abrasive finishing process, Wear 250 (2001) 384–390 [CrossRef] [Google Scholar]
  21. T. Shinmura, Study on magnetic abrasive finishing − characteristics of finished surface, J. Jpn. Soc. Precis. Eng. 53 (1987) 1791–1793 [CrossRef] [Google Scholar]
  22. T.S. Bedi, A.K. Singh, Magnetorheological methods for nano finishing−a review, Part. Sci. Technol. 34 (2015) 412–422 [Google Scholar]
  23. K. Geels, D. Fowler, W-U. Kopp, M. Rückert, editors, Metallographic and materialographic specimen preparation, light microscopy, image analysis and hardness testing, ASTM International, West Conshohocken, 2007, pp. 19428–22959 [Google Scholar]
  24. Y. Tani, K. Kawata, Development of high-efficient fine finishing process using magnetic fluid, Ann. CIRP 33 (1984) 1 [CrossRef] [Google Scholar]
  25. S.N. Shafrir et al., Zirconia coated carbonyl iron particle-based magnetorheological for polishing, Proc. SPIE 7426 (2009) 74260B [CrossRef] [Google Scholar]
  26. S.D. Jacobs, MRF with adjustable pH, Proc. SPIE 8169 (2011) 816902 [CrossRef] [Google Scholar]
  27. W.I. Kordonski, D. Golini, Fundamentals of magnetorheological fluid utilization in high precision finishing, J. Intell. Mater. Syst. Struct. 10 (1999) 683–689 [CrossRef] [Google Scholar]
  28. C.W. Macosko, Rheology: principles, measurements, and applications, VCH Publishers Inc, New York, 1994 [Google Scholar]
  29. P. Balasubramanian, T. Senthilvelan, Optimization of machining parameters in EDM process using cast and sintered copper electrodes, Procedia Mater. Sci. 6 (2014) 1292–1302 [Google Scholar]
  30. R. Mathur, R. Khare, V. Chauhan, Magnetorheological Finishing of Optical Lenses, B. Tech. Project. Mechanical Eng. Dept., IIT-Kanpur, 2003 [Google Scholar]
  31. D.A. Khan, S. Jha, Selection of optimum polishing fluid composition for ball end magnetorheological finishing (BEMRF) of copper, in: Proceedings of 6th Int &27th All India Manuf Tech, 2016, pp. 316–319 [Google Scholar]
  32. D.A. Khan, S. Jha, Synthesis of polishing fluid and novel approach for nanofinishing of copper using ball end magnetorheological finishing process, Mater. Manuf. Process. 33 (2017) 412–422 [Google Scholar]
  33. S.S. Kumar, S.S. Hiremath, Machining of internal features using the developed abrasive flow machine, in: Proceedings of the International Conference on Advances in Production and Industrial Engineering, NIT-Trichy, 2015, 12, pp. 298–303 [Google Scholar]
  34. A. Sidpara, V.K. Jain, Experimental investigations into forces during magneto-rheological fluid based finishing process, Int. J. Mach. Tools Manuf. 51 (2011) 358–362 [CrossRef] [Google Scholar]
  35. A. Sidpara, V.K. Jain, Nano-level finishing of single crystal silicon blank using magnetorheological finishing process, Tribol. Int. 47 (2012) 159–166 [CrossRef] [Google Scholar]
  36. L. Yin, K. Ramesh, S. Wan, X.D. Liu, H. Huang, Y.C. Liu, Abrasive flow polishing of micro bores, Mater. Manuf. Process. 19 (2004) 187–207 [CrossRef] [Google Scholar]
  37. V.K. Jain, Magnetic field assisted abrasive based micro-/nano-finishing, J. Mater. Process. Technol. 209 (2009) 6022–6038 [Google Scholar]
  38. A. Sidpara, M. Das, V.K. Jain, Rheological characterization of magnetorheological finishing fluid, J. Mater. Manuf. Process. 24 (2009) 1467–1478 [CrossRef] [Google Scholar]
  39. COM, Magnetorheological finishing, Article by center for optics manufacturing, 1998, http://www.opticam.rochester.edu [Google Scholar]
  40. A. Sidpara, V.K. Jain, Analysis of forces on the freeform surface in magnetorheological fluid based finishing process, Int. J. Mach. Tools Manuf. 69 (2013) 1–10 [CrossRef] [Google Scholar]
  41. D. Golini, W.I. Kordonski, P.R. Dumas, S. Hogan, Magnetorheological finishing (MRF) in commercial precision optics manufacturing, Proc. SPIE 3782 (1999) 80–91 [CrossRef] [Google Scholar]
  42. W.I. Kordonski, Magnetorheological finishing, Int. J. Mod. Phys. B 10 (1996) 2837–2849 [CrossRef] [Google Scholar]
  43. M. Das, V.K. Jain, P.S. Ghoshdastidar, Nanofinishing of flat workpieces using rotational-magnetorheological abrasive flow finishing (R-MRAFF) processm, Int. J. Adv. Manuf. Technol. 62 (2012) 405–420 [CrossRef] [Google Scholar]
  44. S. Jha, V.K. Jain, R. Komanduri, Effect of extrusion pressure and number of finishing cycles on surface roughness in magnetorheological abrasive flow finishing (MRAFF) process, Int. J. Adv. Manuf. Technol. 33 (2006) 725–729 [Google Scholar]
  45. G.Z. Kremen, Machining time estimation for magnetic abrasive processes, Int. J. Prod. Res. 32 (1994) 2817–2825 [CrossRef] [Google Scholar]
  46. V.K. Jain, P. Kumar, P.K. Behera, S.C. Jayswal, Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process, Wear 250 (2001) 384–390 [CrossRef] [Google Scholar]
  47. L. Nagdeve, V.K. Jain, J. Ramkumar, Experimental Investigations into nano-finishing of freeform surfaces using negative replica of the knee joint, Procedia CIRP 42 (2016) 793–798 [Google Scholar]
  48. A.K. Singh, S. Jha, P.M. Pandey, Performance analysis of ball end magnetorheological finishing process with MR polishing fluid, Mater. Manuf. Process. 30/12 (2015) 1482–1489 [CrossRef] [Google Scholar]
  49. J.K. Sutton, Orthopedic component manufacturing method and equipment, U.S. Patent No 7959490B2, 2011 [Google Scholar]
  50. S. Jha, V.K. Jain, Modeling and simulation of surface roughness in magnetorheological abrasive flow finishing (MRAFF) process, Wear 261 (2006) 856–866 [CrossRef] [Google Scholar]
  51. V. Grover, A.K. Singh, A novel magnetorheological honing process for nano-finishing of variable cylindrical internal surfaces, Mater. Manuf. Process. 32 (2017) 573–580 [CrossRef] [Google Scholar]
  52. R.K. Jain, V.K. Jain, Optimum selection of machining conditions in abrasive flow machining using neural network, J. Mater. Process. Technol. 108 (2000) 62–67 [CrossRef] [Google Scholar]
  53. V. Grover, A.K. Singh, Analysis of particles in magnetorheological polishing fluid for finishing of ferromagnetic cylindrical workpiece, Part. Sci. Technol. 36 (2017) 799–807 [CrossRef] [Google Scholar]
  54. S. Howard, R. Tanner, Shear rate dependence of the normal force of a magnetorheological suspension, Rheol. Acta 42 (2003) 166–170 [CrossRef] [Google Scholar]
  55. N. Ida, Engineering electromagnetics, Springer-Verlag Inc., New York, 2000, pp. 625–628 [Google Scholar]
  56. S.K. Paswan, T.S. Bedi, A.K. Singh, Modeling and simulation of surface roughness in magnetorheological fluid based honing process, Wear 376-377 (2016) Part B 1207–1221 [CrossRef] [Google Scholar]
  57. A.K. Singh, S. Jha, P.M. Pandey, Nanofinishing of a typical 3D ferromagnetic workpiece using ball end magnetorheological finishing process, Int. J. Mach. Tools Manuf. 63 (2012) 21–31 [CrossRef] [Google Scholar]
  58. A.C. Wang, L. Tsai, C.H. Liu, K.Z. Liang, S.J. Lee, Elucidating the optimal parameters in magnetic finishing with gel abrasive, Mater. Manuf. Process. 26 (2011) 786–791 [CrossRef] [Google Scholar]
  59. M. Barletta, S. Guarino, G. Rubino, V. Tagliaferri, Progress in fluidized bed assisted abrasive jet machining (FB-AJM) internal polishing of aluminum tubes, Int. J. Mach. Tools Manuf. 47 (2007) 483–495 [CrossRef] [Google Scholar]
  60. S.O. Kim, J.S. Kwak, Magnetic force improvement and parameter optimization for magnetic abrasive polishing of AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China 18 (2008) 369–373 [CrossRef] [Google Scholar]
  61. V. Grover, A.K. Singh, A novel magnetorheological honing process for nano-finishing of variable cylindrical internal surfaces, Mater. Manuf. Process. 32 (2017) 573–580 [CrossRef] [Google Scholar]
  62. P. Balasubramanian, T. Senthilvelan, Optimization of machining parameters in EDM process using cast and sintered copper electrodes, Procedia Mater. Sci. 6 (2014) 1292–1302 [Google Scholar]
  63. A.K. Singh, S. Jha, P.M. Pandey, Design and development of nanofinishing process for 3D surfaces using ball-end MR finishing tool, Int. J. Mach. Tools Manuf. 51 (2011) 142–151 [CrossRef] [Google Scholar]
  64. A. Sidpara, V.K. Jain, Nanofinishing of freeform surfaces of prosthetic knee joint implant, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 226 (2012) 1833–1846 [Google Scholar]
  65. V.K. Jain, P. Ranjan, V.K. Suri, R. Komanduri, Chemo-mechanical magneto-rheological finishing (CMMRF) of silicon for microelectronics applications, CIRP Ann. Manuf. Technol. 59 (2010) 323–328 [CrossRef] [Google Scholar]
  66. P.M. Pandey, R.S. Mulik, Ultrasonic assisted magnetic abrasive polishing of hardened AISI 52100 steel using unbounded Sic abrasives. Int. J. Refract. Met. H 29 (2011) 68–77 [CrossRef] [Google Scholar]
  67. B. Anwesa, B. Das, Design and fabrication of a novel polishing tool for finishing freeform surfaces in magnetic field assisted finishing (MFAF) process, Precis. Eng. 49 (2017) 61–68 [CrossRef] [Google Scholar]
  68. H. Kumar, A.K. Singh, G. Vishwas, Magnetorheological nano-finishing of diamagnetic material using permanent magnets tool, Precis. Eng. 51 (2018) 30–39 [CrossRef] [Google Scholar]
  69. Y. Hayashi, T. Nakajima, T. Kunio, Ultra uniform Chemical Mechanical Polishing (CMP) using a “Hydro Chuck”, featured by wafer mounting on a quartz glass plate with fully flat water supported surface, Jpn. J. Appl. Phys. 35 (1996) 1054–1059 [CrossRef] [Google Scholar]
  70. P. Ranjan, R. Balasubramaniam, V.K. Suri, Development of chemo-mechanical magnetorheological finishing process for super finishing of copper alloy, Int. J. Manuf. Technol. Manag. 27 (2013) 130–141 [CrossRef] [Google Scholar]
  71. V.C. Shukla, P.M. Pandey, Comprehensive study for optimizing sintered density of magnetic abrasive particles of Fe and SiC mix for UAMAF process, IVth International Conference on Production and Industrial Engineering, CPIE, NIT Jalandhar, India, 2016 [Google Scholar]
  72. T. Mori, K. Hirota, Y. Kawashima, Clarification of magnetic abrasive finishing mechanism, J. Mater. Process. Technol. 143–144 (2003) 682–686 [CrossRef] [Google Scholar]
  73. V.C. Shukla, P.M. Pandey, Experimental investigations into sintering of magnetic abrasive powder for ultrasonic assisted magnetic abrasive finishing process, Mater. Manuf. Process. 32 (2017) 108–114 [CrossRef] [Google Scholar]
  74. R.S. Mulik, P.M. Pandey, Mechanism of surface finishing in ultrasonic-assisted magnetic abrasive finishing process, Mater. Manuf. Process. 25 (2010) 1418–1427 [CrossRef] [Google Scholar]
  75. H. Yamaguchi, T. Shinmura, Study of the surface modification from an internal magnetic abrasive finishing process, Wear 225–229 (1999) 246–255 [CrossRef] [Google Scholar]
  76. P. Kala, P.M. Pandey, Experimental study on finishing forces in double disk magnetic abrasive finishing process while finishing paramagnetic workpiece, Procedia Mater. Sci. 5 (2014) 1677–1684 [CrossRef] [Google Scholar]
  77. D.J. Klingenberg, Magneto rheology: applications and challenges, AIChE J. 47 (2001) 246–249 [CrossRef] [Google Scholar]
  78. M.S. Niranjan, S. Jha, Performance analysis of ball end magnetorheological Finishing using sintered magnetic abrasive based magnetorheological polishing fluid, 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), IIT Guwahati, Assam, India, 2014 [Google Scholar]
  79. A. Sadiq, M.S. Shunmugam, Investigation into magnetorheological abrasive honing (MRAH), Int. J. Mach. Tools Manuf. 49 (2009) 554–560 [CrossRef] [Google Scholar]
  80. S. Kumar, V.K. Jain, A. Sidpara, Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process, Precis. Eng. 42 (2015) 165–178 [CrossRef] [Google Scholar]
  81. J.M. Ginder, in: G.L. Trigg (Ed.), Encyclopedia of applied physics Vol. 16, Wiley, New York, 1996, p. 487 [Google Scholar]
  82. W.I. Kordonski, S. Gorodkin, R. Behlok, In-line monitoring of (MR) fluid properties, J. Magn. Magn. Mater. 2015 (2015) 328–334 [CrossRef] [Google Scholar]
  83. H. Yarmand, S. Gharehkhani, Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid, Hindawi Publishing Corporation Scientific World Journal, Vol. 2014, (2014) Article ID 369593 [Google Scholar]
  84. A. Sidpara, V.K. Jain, Experimental investigations into forces during magneto-rheological fluid based finishing process, Int. J. Mach. Tools Manuf. 51 (2011) 358–362 [CrossRef] [Google Scholar]
  85. M. Das, V.K. Jain, P.S. Ghoshdastidar, Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process, Int. J. Mach. Tools Manuf. 48 (2008) 415–426 [CrossRef] [Google Scholar]
  86. A.K. Singh, S. Jha, P.M. Pandey, Mechanism of material removal in ball end magnetorheological finishing process, Wear 302 (2013) 1180–1191 [CrossRef] [Google Scholar]
  87. A. Zafar, S. Jha, Reprint of modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process, Wear 376–377 (2017) 194–202 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.