Open Access
Manufacturing Rev.
Volume 5, 2018
Article Number 15
Number of page(s) 12
Published online 21 November 2018
  1. D.A. Lucca, Y.W. Seo, R. Komanduri, Effect of tool edge geometry on energy dissipation in ultraprecision machining, CIRP Annals 42 (1993) 83–86 [CrossRef] [Google Scholar]
  2. N. Fang, Slip-line modeling of machining with a rounded-edge tool: Part I: new model and theory, J. Mech. Phys. Solids 51 (2003) 715–742 [CrossRef] [Google Scholar]
  3. M. Masuko, Fundamental research on the metal cutting-second report, Bull. Japan Soc. Mech. Eng. 118 (1956) 371 [Google Scholar]
  4. P. Abrecht, New developments in the theory of the metal-cutting process, J. Eng. Ind 82 (1960) 348 [CrossRef] [Google Scholar]
  5. M.C. Shaw, The size effect in metal cutting, Sadhana 28 (2003) 875–896 [CrossRef] [Google Scholar]
  6. K. Nakayama, K. Tamura, Size effect in metal-cutting force, J. Eng. Ind. 90 (1968) 119–126 [CrossRef] [Google Scholar]
  7. A.G. Atkins, Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems, Int. J. Mech. Sci. 45 (2003) 373–396 [Google Scholar]
  8. S. Subbiah, S.N. Melkote, The size-effect in micro-cutting at low and high rake angles, Proceedings of 2004 ASME International Mechanical Engineering Congress and Exposition (IMECE04), 2004, pp. 485–493 [Google Scholar]
  9. T. Zhang, Z.Q. Liu, Z.Y. Shi, C.H. Xu, Investigation on size effect of specific cutting energy in mechanical micro-cutting, Int. J. Adv. Manuf. Technol. 91 (2017) 2621–2633 [CrossRef] [Google Scholar]
  10. N. Chen, M.J. Chen, C.Y. Wu, X.D. Pei, Cutting surface quality analysis in micro ball end-milling of KDP crystal considering size effect and minimum undeformed chip thickness, Precis. Eng. 50 (2017) 410–420 [CrossRef] [Google Scholar]
  11. B. Liu, F.Z. Fang, R. Li, Z.W. Xu, Y.S. Liang, Experimental study on size effect of tool edge and subsurface damage of single crystal silicon in nano-cutting, Int. J. Adv. Manuf. Technol. 98 (2018) 1093–1101 [CrossRef] [Google Scholar]
  12. M.C. Shaw, New developments in grinding, Carnegie Press, Pittsburgh, 1972 [Google Scholar]
  13. H.W. Park, S.Y. Liang, Force modeling of micro-grinding incorporating crystallographic effects, Int. J. Mach. Tools Manuf. 48 (2008) 1658–1667 [CrossRef] [Google Scholar]
  14. E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B 64 (1951) 747–753 [Google Scholar]
  15. N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25–28 [Google Scholar]
  16. D.A. Hughes, N. Hansen, Microstructure and strength of nickel at large strains, Acta Mater. 48 (2000) 2985–3004 [CrossRef] [Google Scholar]
  17. S.M. Byon, Y. Lee, Deformation analysis of micro-sized material using strain gradient plasticity, J. Mech. Sci. Technol. 20 (2006) 621–633 [CrossRef] [Google Scholar]
  18. K. Ueda, K. Iwata, Chip formation mechanism in single crystal cutting of β-brass, CIRP Ann. Manuf. Technol. 29 (1980) 41 [CrossRef] [Google Scholar]
  19. X. Wu, L. Li, N. He, M. Zhao, Z. Zhan, Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper, Int. J. Adv. Manuf. Technol. 79 (2015) 321–327 [CrossRef] [Google Scholar]
  20. B.L. Lawson, N. Kota, O.B. Ozdoganlar, Effects of crystallographic anistropy on orthogonal micromachining of single-crystal aluminum, J. Manuf. Sci. Eng. 130 (2008) 031116 [CrossRef] [Google Scholar]
  21. J.Z. Li, B. Song, S.F. Wen, Y.S. Shi, A new insight of the relationship between crystallographic orientation and micro-cracks of Ti–47Al–2Cr–2Nb alloy, Mater. Sci. Eng. A 731 (2018) 156–160 [CrossRef] [Google Scholar]
  22. F. Xu, F. Fang, Y. Zhu, X. Zhang, Study on crystallographic orientation effect on surface generation of aluminum in nano-cutting, Nanoscale Res. Lett. 12 (2017) 289 [CrossRef] [Google Scholar]
  23. M. Zhao, X. Ji, B. Li, S.Y. Liang, Investigation on the influence of material crystallographic orientation on grinding force in the micro-grinding of single-crystal copper with single grit, Int. J. Adv. Manuf. Technol. 90 (2016) 3347–3355 [CrossRef] [Google Scholar]
  24. W. Tayon, R. Crooks, M. Domack, J. Wagner, A.A. Elmustafa, EBSD study of delamination fracture in Al–Li alloy2090, Exp. Mech. 50 (2008) 135–143 [CrossRef] [Google Scholar]
  25. B.Y. Cao, D.H. Lassila, M.S. Schneider, B.K. Kad, C.X. Huang, Y.B. Xu, D.H. Kalantar, B.A. Remington, M.A. Meyers, Effect of shock compression method on the defect substructure in monocrystalline copper, Mater. Sci. Eng. A 409 (2005) 270–281 [CrossRef] [Google Scholar]
  26. K.J. Frutschy, R.J. Clifton, High-temperature pressure-shear plate impact experiments on OFHC copper, J. Mech. Phys. Solids 46 (1998) 1723–1744 [CrossRef] [Google Scholar]
  27. C. MTI, Available at http://www.Mtixtl.Com/cucrystalsubstratessinglecrystal.Aspx, 2018 [Google Scholar]
  28. H. Conrad, Grain-size dependence of the flow stress of Cu from millimeters to nanometers, Metall. Mater. Trans. A 35A (2004) 15 [Google Scholar]
  29. T. Suzuki, I.I. Yonenaga, H.O. Kirchner, Yield strength of diamond, Phys. Rev. Lett. 75 (1995) 3470–3472 [CrossRef] [Google Scholar]
  30. M.R. Staker, D.L. Holt, The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700°C, Acta Metall. 20 (1972) 569–579 [CrossRef] [Google Scholar]
  31. F.H. Abed, G.Z. Voyiadjis, Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals, Int. J. Plast. 21 (2005) 1618–1639 [CrossRef] [Google Scholar]
  32. G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the Seventh International Symposium on Ballistics, The Hague, 1983, pp. 541–547 [Google Scholar]
  33. P.L.B. Oxley, The mechanics of machining: an analytical approach to assessing machinability, Halsted Press New York, UK, 1989 [Google Scholar]
  34. S.A. Tabei, Modeling of microstructural evolutions in machining of dual phase alloys, Georgia Institute of Technology, Atlanta, USA, 2015 [Google Scholar]
  35. E. Schmidt, W. Boas, Plasticity of crystal, Springer, Berlin, 1950 [Google Scholar]
  36. L. Cong, China metallurgical encyclopedia, metal and plastic processing, Metallurgical Industry Press, Beijing, China, 1999 [Google Scholar]
  37. J.A. Badger, A.A. Torrance, A comparison of two models to predict grinding forces from wheel surface topography, Int. J. Mach. Tools Manuf. 40 (2000) 1099–1120 [CrossRef] [Google Scholar]
  38. S.S. Law, S.M. Wu, A.M. Joglekar, On building models for the grinding process, J. Eng. Ind. 95 (1973) 983–991 [CrossRef] [Google Scholar]
  39. M.C. Shaw, New developments in grinding, Carnegie Press, Pittsburgh, 1972 [Google Scholar]
  40. R.L. Hecker, S.Y. Liang, X.J. Wu, P. Xia, D.G.W. Jin, Grinding force and power modeling based on chip thickness analysis, Int. J. Adv. Manuf. Technol. 33 (2006) 449–459 [CrossRef] [Google Scholar]
  41. S. Malkin, Grinding technology: theory and applications of machining with abrasives, Ellis Horwood Series in Mechanical Engineering, American Society of Civil Engineers, Reston, VA, 1989 [Google Scholar]
  42. L. Lichun, F. Jizai, J. Peklenik, A study of grinding force mathematical model, CIRP Annals 29 (1980) 245–249 [CrossRef] [Google Scholar]
  43. Y. Shao, Predictive modeling of residual stress in MQL grinding and surface characteristcs in grinding of ceramics, Georgia Institute of Technology, Atlanta, USA, 2015 [Google Scholar]
  44. R.L. Hecker, Part surface roughness modeling and process optimal control of cylindrical grinding, Georgia Institute of Technology, Atlanta, USA, 2003 [Google Scholar]
  45. M.A. Younis, H. Alawi, Probabilistic analysis of the surface grinding process, Trans. Canadian Soc. Mech. Eng. 8 (1984) 208–213 [CrossRef] [Google Scholar]
  46. D. Zishan, Research on surface integrity and process optimal criterion of micro-grinding, Donghua University, Shanghai, China, 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.