Open Access
Review
Issue
Manufacturing Rev.
Volume 6, 2019
Article Number 2
Number of page(s) 22
DOI https://doi.org/10.1051/mfreview/2018015
Published online 15 February 2019
  1. A. Ghosh, A. Mallik, Manufacturing science, 2nd edn. East West Press Private Ltd., New Delhi, 2010 [Google Scholar]
  2. C.S. Kumar, R.S. Jadoun, Current advanced research development of electric discharge machining (EDM): a review, Int. J. Res. Advent Technol. 2 (2014) 273–297 [Google Scholar]
  3. K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), Int. J. Mach. Tools Manuf. 43 (2003) 1287–1300 [CrossRef] [Google Scholar]
  4. A. Bergaley, N. Sharma, Optimization of electrical and nonelectrical factors in EDM for machining die steel using copper electrode by adopting Taguchi technique, Int. J. Innov. Technol. Exploring Eng. 3 (2013) 44–48 [Google Scholar]
  5. C.J. Elman, Electrical discharge machining, The Society of Manufacturing Engineers Publication, Michigan, 2001 [Google Scholar]
  6. C.H. Haron Che, B.M.D. Deros, A. Ginting, M. Fauziah, Investigation on the influence of the machining parameters when machining tool steel using EDM, J. Mater. Process. Technol. 116 (2001) 84–87 [CrossRef] [Google Scholar]
  7. M. Kunieda, S. Ojima, Improvement of EDM efficiency of silicon single crystal through ohmic contact, J. Int. Soc. Precis. Eng. Nanotechnol. 24 (2000) 185–190 [Google Scholar]
  8. M.S. Sohani, V.N. Gaitonde, B. Siddeswarappa, A.S. Deshpande, Investigations into the effect of tool shapes with size factor consideration in sink electrical discharge machining (EDM) process, Int. J. Adv. Manuf. Technol. 45 (2009) 1131–1145 [CrossRef] [Google Scholar]
  9. R. Ji, Y. Liu, Y. Zhang, B. Cai, J. Ma, X. Li, Influence of dielectric and machining parameters on the process performance for electric discharge milling of SiC ceramic, Int. J. Adv. Manuf. Technol. 59 (2012) 127–136 [CrossRef] [Google Scholar]
  10. V.S. Naidu, K. Vipindas, R. Manu, J. Mathew, Experimental study on varying electromagnetic field assisted die sinking EDM, in: 5th International & 26th All India Manufacturing Technology, Design and Research Conference, IIT Guwahati, Assam, India, December 2014, pp. 1–6 [Google Scholar]
  11. B.M. Schumacher, After 60 years of EDM the discharge process remains still disputed, J. Mater. Process. Technol. 149 (2004) 376–381 [CrossRef] [Google Scholar]
  12. Y.F. Chen, Y.C. Lin, Surface modifications of Al–Zn–Mg alloy using combined EDM with ultrasonic machining and addition of TiC particles into the dielectric, J. Mater. Process. Technol. 209 (2009) 4343–4350 [CrossRef] [Google Scholar]
  13. A. Abdullah, M.R. Shabgard, Effect of ultrasonic vibration of tool on electrical discharge machining of cemented tungsten carbide (WC-Co), Int. J. Adv. Manuf. Technol. 38 (2008) 1137–1147 [CrossRef] [Google Scholar]
  14. K.M. Shu, H.R. Shih, G.C. Tu, Electrical discharge abrasive drilling of hard materials using a metal matrix composite electrode, Int. J. Adv. Manuf. Technol. 29 (2006) 678–687 [CrossRef] [Google Scholar]
  15. M. Kunieda, H. Muto, Development of multi-spark EDM, ClRP Ann. Manuf. Technol. 49 (2000) 119–122 [CrossRef] [Google Scholar]
  16. Y.F. Tzeng, C.Y. Lee, Effects of powder characteristics on electro discharge machining efficiency, Int. J. Adv. Manuf. Technol. 17 (2001) 586–592 [CrossRef] [Google Scholar]
  17. G.S. Prihandana, M. Mahardika, M. Hamdi, K. Mitsui, Effect of low-frequency vibration on workpiece in EDM processes, J. Mech. Sci. Technol. 25 (2011) 1231–1234 [CrossRef] [Google Scholar]
  18. C.C. Wang, B.H. Yan, H.M. Chow, Y. Suzuki, Cutting austempered ductile iron using an EDM sinker, J. Mater. Process. Technol. 88 (1999) 83–89 [CrossRef] [Google Scholar]
  19. K. Kung, J. Horng, K. Chiang, Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide, Int. J. Adv. Manuf. Technol. 40 (2009) 95–104 [CrossRef] [Google Scholar]
  20. B. Lauwers, J.P. Kruth, W. Liu, W. Eeraerts, B. Schacht, P. Bleys, Investigation of material removal mechanisms in EDM of composite ceramic materials, J. Mater. Process. Technol. 149 (2004) 347–352 [CrossRef] [Google Scholar]
  21. K. Liu, D. Reynaerts, B. Lauwers, Influence of the pulse shape on the EDM performance of Si3N4-TiN ceramic composite, CIRP Ann. Manuf. Technol. 58 (2009) 217–220 [CrossRef] [Google Scholar]
  22. C.F. Hu, Y.C. Zhou, Y.W. Bao, Material removal and surface damage in EDM of Ti3SiC2 ceramic, Ceram. Int. 34 (2008) 537–541 [CrossRef] [Google Scholar]
  23. A.K. Khanra, B.R. Sarkar, B. Bhattacharya, L.C. Pathak, M.M. Godkhindi, Performance of ZrB2-Cu composite as an EDM electrode, J. Mater. Process. Technol. 183 (2007) 122–126 [CrossRef] [Google Scholar]
  24. A. Bhattacharya, A. Batish, G. Singh, V.K. Singla, Optimal parameter settings for rough and finish machining of die steels in powder-mixed EDM, Int. J. Adv. Manuf. Technol. 61 (2012) 537–548 [CrossRef] [Google Scholar]
  25. S. Thiyagarajan, S.P. Sivapirakasam, J. Mathew, M. Surianarayan, K. Sundareswaran, Influence of work-piece materials on aerosol emission from die sinking electrical discharge machining process, Process Saf. Environ. Protect. 92 (2014) 739–749 [CrossRef] [Google Scholar]
  26. G.K. Bose, K.K. Mahapatra, Parametric study of die sinking EDM process on AISI H13 tool steel using statistical techniques, Adv. Prod. Eng. Manage. 9 (2014) 168–180 [Google Scholar]
  27. S. Daneshmand, E.F. Kahrizi, A. Akbar, L. Neyestanak, M.M. Ghahi, Experimental investigations into electro discharge machining of NiTi shape memory alloys using rotational tool, Int. J. Electrochem. Sci. 8 (2013) 7484–7497 [Google Scholar]
  28. V. Srivastava, P.M. Pandey, Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode, J. Manuf. Process. 14 (2012) 393–402 [CrossRef] [Google Scholar]
  29. L. Tang, Y.F. Guo, Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel, Int. J. Adv. Manuf. Technol. 70 (2014) 1369–1376 [CrossRef] [Google Scholar]
  30. S. Assarzadeh, M. Ghoreishi, Statistical modelling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC/6%Co), Procedia CIRP 6 (2013) 463–468 [CrossRef] [Google Scholar]
  31. E. Uhlmann, D.C. Domingos, Investigations on vibration-assisted EDM machining of seal slots in high-temperature resistant materials for turbine components, Procedia CIRP 6 (2013) 71–76 [CrossRef] [Google Scholar]
  32. F. Klocke, M. Holsten, L. Hensgen, A. Klink, Experimental investigations on sinking-EDM of seal slots in gamma-TiAl, Procedia CIRP 24 (2014) 92–96 [CrossRef] [Google Scholar]
  33. U. Maradia, R. Knaak, J. Boos, M. Boccadoro, J. Stirnimann, K. Wegener, EDM process analysis using high-speed imaging, in: Proceeding of the 13th International Conference of the European Society for Precision Engineering & Nanotechnology, Berlin, Germany, 2013, pp. 39–42 [Google Scholar]
  34. F. Schwade, M. Klocke, A. Klink, D. Veselovac, Analysis of material removal rate and electrode wear in sinking EDM roughing strategies using different graphite grades, Procedia CIRP 6 (2013) 163–167 [CrossRef] [Google Scholar]
  35. M.K. Das, K. Kumar, T.K. Barmana, P. Sahoo, Application of artificial bee colony algorithm for optimization of MRR and surface roughness in EDM of EN31 tool steel, Procedia Mater. Sci. 6 (2014) 741–751 [CrossRef] [Google Scholar]
  36. N. Annamalai, V. Sivaramakrishnan, B. Kumar, Suresh, N. Baskar, Investigation and modeling of electrical discharge machining process parameters for AISI 4340 steel, Int. J. Eng. Technol. 5 (2014) 4761–4770 [Google Scholar]
  37. K.H. Syed, K. Palaniyandi, Performance of electrical discharge machining using aluminium powder suspended distilled water, Turk. J. Eng. Environ. Sci. 36 (2012) 195–207 [Google Scholar]
  38. N.M. Abbas, N. Yusoff, R.M. Wahab, Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing, Procedia Eng. 41 (2012) 1684–1688 [CrossRef] [Google Scholar]
  39. Y.F. Chen, H.M. Chow, Y.C. Lin, T. Ching, Surface modification using semi-sintered electrodes on electrical discharge machining, Int. J. Adv. Manuf. Technol. 36 (2008) 490–500 [CrossRef] [Google Scholar]
  40. M. Kunieda, S. Ojima, Improvement of EDM efficiency of silicon single crystal through ohmic contact, Precis. Eng. 24 (2000) 185–190 [CrossRef] [Google Scholar]
  41. B.O. Lauwers, H. Sterling, W. Vanderauwera, Development of an operations evaluation system for sinking EDM, CIPR Ann. Manuf. Technol. 59 (2010) 223–226 [CrossRef] [Google Scholar]
  42. K. Karunakaran, M. Chandrasekaran, Experimental investigation of nano powders influence in NPMEDM of Inconel 800 with silver coated electrolytic copper electrode, Indian J. Sci. Technol. 9 (2016) 1–15 [CrossRef] [Google Scholar]
  43. V. Senthilkumar, B.U. Omprakash, Effect of titanium carbide particle addition in the aluminium composite on EDM process parameters, J. Manuf. Process. 13 (2011) 60–66 [CrossRef] [Google Scholar]
  44. J.D. Marafona, Black layer affects the thermal conductivity of the surface of copper-tungsten electrode, Int. J. Adv. Manuf. Technol. 42 (2009) 482–488 [CrossRef] [Google Scholar]
  45. J.D. Marafona, Black layer characterisation and electrode wear ratio in electrical discharge machining (EDM), J. Mater. Process. Technol. 184 (2007) 27–31 [CrossRef] [Google Scholar]
  46. M. Kunieda, T. Kobayashi, Clarifying mechanism of determining tool electrode wear ratio in EDM using spectroscopic measurement of vapour density, J. Mater. Process. Technol. 149 (2004) 284–288 [CrossRef] [Google Scholar]
  47. M. Kunieda, M. Yoshida, N. Taniguchi, Electrical discharge machining in gas, CIRP Ann. Manuf. Technol. 46 (1997) 143–146 [CrossRef] [Google Scholar]
  48. B.R. Bundel, Experimental investigation of electrode wear in die-sinking EDM on different pulse-on & off time (µs) in cylindrical copper electrode, Int. J. Mod. Eng. Res. 5 (2015) 49–54 [Google Scholar]
  49. Y. Jiang, W. Zhao, X.i. Xuecheng, A study on pulse control for small-hole electrical discharge machining, J. Mater. Process. Technol. 212 (2012) 1463–1471 [CrossRef] [Google Scholar]
  50. H. Singh, Investigating the effect of copper chromium and aluminum electrodes on EN-31 die steel on electric discharge machine using positive polarity, in: Proceedings of the World Congress on Engineering, Vol III, London, UK, July 2012, pp. 1–5 [Google Scholar]
  51. A.A. Khan, Electrode wear and material removal rate during EDM of aluminum and mild steel using copper and brass electrodes, Int. J. Adv. Manuf. Technol. 39 (2008) 482–487 [CrossRef] [Google Scholar]
  52. S. Gopalakannan, T. Senthilvelan, Effect of electrode materials on electric discharge machining of 316 L and 17-4 PH stainless steels, J. Miner. Mater. Charact. Eng. 11 (2012) 685–690 [Google Scholar]
  53. S. Chandramouli, U.S. Balraj, K. Eswaraia, Optimization of electrical discharge machining process parameters using Taguchi method, Int. J. Adv. Mech. Eng. 4 (2014) 425–434 [Google Scholar]
  54. V.V. Reddy, P.V. Krishna, B.S. Kumar, M. Shashidhar, Optimization of process parameters during EDM of stainless steel 304 using Taguchi method, Int. J. Eng. Trends Technol. 31 (2016) 1–9 [CrossRef] [Google Scholar]
  55. C. Cogun, S. Akaslan, The effect of machining parameters on tool electrode edge wear and machining performance in electric discharge machining (EDM), KSME Int. J. 16 (2002) 46–59 [CrossRef] [Google Scholar]
  56. Y.Y. Tsai, C.T. Lu, Influence of current impulse on machining characteristics in EDM, J. Mech. Sci. Technol. 21 (2007) 1617–1621 [CrossRef] [Google Scholar]
  57. Y.H. Guu, T.K. HouMax, Effect of machining parameters on surface textures in EDM of Fe-Mn-Al alloy, Mater. Sci. Eng. 466 (2007) 61–67 [CrossRef] [Google Scholar]
  58. M. Gostimirovic, P. Kovac, S. Milenko, B. Skoric, Influence of discharge energy on machining characteristics in EDM, J. Mech. Sci. Technol. 26 (2012) 173–179 [CrossRef] [Google Scholar]
  59. Y. Keskin, H.S. Halkac, M. Kizil, An experimental study for determination of the effects of machining parameters on surface roughness in electrical discharge machining (EDM), Int. J. Adv. Manuf. Technol. 28 (2006) 1118–1121 [CrossRef] [Google Scholar]
  60. H. Sidhom, F. Ghanem, T. Amadou, G. Gonzalez, C. Braham, Effect of electro discharge machining (EDM) on the AISI316L SS white layer microstructure and corrosion resistance, Int. J. Adv. Manuf. Technol. 65 (2013) 141–153 [CrossRef] [Google Scholar]
  61. J.C. Rebelo, A.M. Dias, D. Kremer, J.L. Lebrun, Influence of EDM pulse energy on the surface integrity of martensitic steels, J. Mater. Process. Technol. 84 (1998) 90–96 [CrossRef] [Google Scholar]
  62. N. Giandomenico, F.H. Gorgerat, B. Lavazais, Development of a new generator for die sinking electrical discharge machining, Procedia CIRP 42 (2016) 721–726 [CrossRef] [Google Scholar]
  63. A.M. Nikalje, A. Kumar, K.V. Sai Srinadh, Influence of parameters and optimization of EDM performance measures on MDN 300 steel using Taguchi method, Int. J. Adv. Manuf. Technol. 69 (2013) 41–49 [CrossRef] [Google Scholar]
  64. H.T. Lee, C. Liu, Optimizing the EDM hole-drilling strain gage method for the measurement of residual stress, J. Mater. Process. Technol. 209 (2009) 5626–5635 [CrossRef] [Google Scholar]
  65. B. Ekmekci, Residual stresses and white layer in electric discharge machining (EDM), App. Surf. Sci. 253 (2007) 9234–9240 [CrossRef] [Google Scholar]
  66. H.T. Lee, W.P. Rehbach, HsuFC, T.Y. Tai, E. Hsu, The study of EDM hole-drilling method for measuring residual stress in SKD11 tool steel, J. Mater. Process. Technol. 149 (2004) 88–93 [CrossRef] [Google Scholar]
  67. S.S. Sidhu, A. Batish, S. Kumar, EDM of metal matrix composite for parameter design using lexicographic goal programming, Mater. Manuf. Process. 28 (2013) 495–500 [CrossRef] [Google Scholar]
  68. K. Stambekova, H.M. Lin, J.Y. Uan, Microstructural and corrosion characteristics of alloying modified layer on 5083 Al alloy by electrical discharge alloying process with pure silicon electrode, Mater. Trans. 53 (2012) 1436–1442 [CrossRef] [Google Scholar]
  69. H.T. Lee, T.Y. Tai, Relationship between EDM parameters and surface crack formation, J. Mater. Process. Technol. 142 (2003) 676–683 [CrossRef] [Google Scholar]
  70. Y.F. Luo, An investigation into the actual EDM off-time in SEA machining, J. Mater. Process. Technol. 74 (1998) 61–68 [CrossRef] [Google Scholar]
  71. J.A. Sanchez, L.N.L. Lacalle, A. Lamikiz, U. Bravo, Dimensional accuracy optimisation of multi-stage planetary EDM, Int. J. Machine Tools Manuf. 42 (2002) 1643–1648 [CrossRef] [Google Scholar]
  72. O.Z. Salman, M.C. Kayacan, Evolutionary programming method for modelling the EDM parameters for roughness, J. Mater. Process. Technol. 200 (2008) 347–355 [CrossRef] [Google Scholar]
  73. M. Kiyak, O.C. Akır, Examination of machining parameters on surface roughness in EDM of tool steel, J. Mater. Process. Technol. 191 (2007) 141–144 [CrossRef] [Google Scholar]
  74. I. Puertas, C.J. Luis, Optimization of EDM conditions in the manufacturing process of B4C and WC-Co conductive ceramics, Int. J. Adv. Manuf. Technol. 59 (2012) 575–582 [CrossRef] [Google Scholar]
  75. P. Peças, E. Henriques, Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM), Int. J. Adv. Manuf. Technol. 37 (2008) 1120–1132 [CrossRef] [Google Scholar]
  76. S. Abdulkareem, A.A. Khan, M. Konneh, Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining, Int. J. Adv. Manuf. Technol. 45 (2009) 1146–1151 [CrossRef] [Google Scholar]
  77. H.T. Lee, T.Y. Tai, Relationship between EDM parameters and surface crack formation, J. Mater. Process. Technol. 142 (2003) 676–683 [CrossRef] [Google Scholar]
  78. Y.Y. Tsai, C.H. Tseng, C.K. Chang, Development of a combined machining method using electrorheological fluids for EDM, J. Mater. Process. Technol. 201 (2008) 565–569 [CrossRef] [Google Scholar]
  79. B.H. Yan, H.C. Tsai, F.Y. Huang, The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium, Int. J. Mach. Tools Manuf. 45 (2005) 194–200 [CrossRef] [Google Scholar]
  80. J. Stráský, M. Janecek, P. Harcuba, M. Bukovina, L. Wagner, The effect of microstructure on fatigue performance of Ti-6Al-4V alloy after EDM surface treatment for application in orthopaedics, J. Mech. Behav. Biomed. Mater. 4 (2011) 1955–1962 [CrossRef] [Google Scholar]
  81. A.R. Khan, M.A. Ahmad, N. Munir, Z.R. Butt, Influence of electrode material on quality of blind holes machined via electric discharge machine (die sinker), Int. J. Eng. Res. Sci. Technol. 4 (2015) 1–12 [Google Scholar]
  82. M.A. Younis, M.S. Abbas, M.A. Gouda, F.H. Mahmoud, A.S. AAbd, Effect of electrode material on electrical discharge machining of tool steel surface, Ain Shams Eng. J. 6 (2015) 977–986 [CrossRef] [Google Scholar]
  83. R.F. Santos, E.R. Silva, W.F. Sales, A.A. Raslan, Analysis of the surface integrity when nitriding AISI 4140 steel by the sink electrical discharge machining (EDM) process, Procedia CIRP 45 (2016) 303–306 [CrossRef] [Google Scholar]
  84. S. Ahmad, M.A. Lajis, Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration, IOP Conf. Ser. Mater. Sci. Eng. 50 (2013) 012062 [CrossRef] [Google Scholar]
  85. S.S. Habib, Parameter optimization of electrical discharge machining using Taguchi approach, J. Eng. Technol. Res. 6 (2014) 27–42 [CrossRef] [Google Scholar]
  86. D.C. Chen, J.J. Jhang, M.W. Guo, Application of Taguchi design method to optimize the electrical discharge machining, J. Achiev. Mater. Manuf. Eng. 57 (2013) 1–7 [Google Scholar]
  87. D. Kanagarajan, K. Palanikumar, R. Karthikeyan, Effect of electrical discharge machining on strength and reliability of WC–30%Co composite. Mater. Des. 39 (2012) 469–474 [CrossRef] [Google Scholar]
  88. E. Uhlmann, D.C. Domingos, Development and optimization of the die-sinking EDM technology for machining the nickel-based alloy MAR-M247 for turbine components, Procedia CIRP 6 (2013) 180–185 [CrossRef] [Google Scholar]
  89. I. Puertas, C.J. Luis, Optimization of EDM conditions in the manufacturing process of B4C and WC-Co conductive ceramics, Int. J. Adv. Manuf. Technol. 59 (2012) 575–582 [CrossRef] [Google Scholar]
  90. F. Ghanem, N.B. Fredj, H. Sidhom, C. Braham, Effects of finishing processes on the fatigue life improvements of electro-machined surfaces of tool steel, Int. J. Adv. Manuf. Technol. 52 (2011) 583–595 [CrossRef] [Google Scholar]
  91. M.S. Shunmugam, P.K. Philip, A. Gangadhar, Improvement of wear resistance by EDM with tungsten carbide P/M electrode, Wear 171 (1994) l–5 [CrossRef] [Google Scholar]
  92. J. Baizán, A.N. Crespín, R. Casanueva, F.J. Azcondo, C. Brañas, F.J. Díaz, Converter with four quadrant switches for EDM applications, IEEE Trans. Ind. 50 (2014) 4356–4362 [CrossRef] [Google Scholar]
  93. Y.C. Lin, H.M. Chow, B.H. Yan, H.J. Tzeng, Effects of finishing in abrasive fluid machining on microholes fabricated by EDM, Int. J. Adv. Manuf. Technol. 33 (2007) 489–497 [CrossRef] [Google Scholar]
  94. F. Klocke, M. Holsten, L. Hensgen, A. Klink, Experimental investigations on sinking-EDM of seal slots in gamma-Ti Al, Procedia CIRP 24 (2014) 92–96 [CrossRef] [Google Scholar]
  95. J. Jeykrishnan, B. VijayaRamnath, G. Sureshrajan, M. Siva Bharath, X.H. Savariraj, S. Akilesh, Effects of die-sinking electro-discharge machining parameters on surface roughness in Inconel 825 alloy, Indian J. Sci. Technol. 9 (2016) 1–5 [Google Scholar]
  96. G. Rajyalakshmi, P. Venkata Ramaiah, Application of Taguchi, fuzzy-grey relational analysis for process parameters optimization of WEDM on Inconel-825, Indian J. Sci. Technol. 8 (2015) 1–12 [CrossRef] [Google Scholar]
  97. B. Izquierdo, J.A. Sanchez, S. Plaza, I. Pombo, N. Ortega, A numerical model of the EDM process considering the effect of multiple discharges, Int. J. Mach. Tools Manuf. 49 (2009) 220–229 [CrossRef] [Google Scholar]
  98. K. Salonitis, A. Stournaras, P. Stavropoulos, G. Chryssolouris, Thermal modeling of the material removal rate and surface roughness for die-sinking EDM, Int. J. Adv. Manuf. Technol. 40 (2009) 316–323 [CrossRef] [Google Scholar]
  99. S.N. Joshi, S.S. Pandey, Thermo-physical modelling of die-sinking EDM process, J. Manuf. Process. 12 (2010) 45–56 [CrossRef] [Google Scholar]
  100. S.H. Yeo, W. Kurnia, P.C. Tan, Critical assessment and numerical comparison of electro-thermal models in EDM, J. Mater. Process. Technol. 203 (2008) 241–251 [CrossRef] [Google Scholar]
  101. J.D. Marafona, A. Araujo, Influence of work-piece hardness on EDM performance, Int. J. Mach. Tools Manuf. 49 (2009) 744–748 [CrossRef] [Google Scholar]
  102. S. Sharif, W. Safiei, A.F. Mansor, M.H.M. Isa, R.M. Saad, Experimental study of electrical discharge machine (die sinking) on stainless steel 316L using design of experiment, Procedia Manuf. 2 (2015) 147–152 [CrossRef] [Google Scholar]
  103. S. Daneshmand, E.F. Kahrizi, E. Abedi, M.M. Abdolhosseini, Influence of machining parameters on electro discharge machining of NiTi shape memory alloys, Int. J. Electrochem. Sci. 8 (2013) 3095–3104 [Google Scholar]
  104. S. Lakshmanan, M. Kumar, Optimization of EDM parameters using response surface methodology for EN31 tool steel machining, Int. J. Eng. Sci. Innov. Technol. 2 (2013) 64–71 [Google Scholar]
  105. P.M. George, B.K. Raghunath, L.M. Manocha, A.M. Warrier, EDM machining of carbon-carbon composite: a Taguchi approach, J. Mater. Process. Technol. 145 (2004) 66–71 [CrossRef] [Google Scholar]
  106. Y. Tzeng, Development of a flexible high-speed EDM technology with geometrical transform optimization, J. Mater. Process. Technol. 203 (2008) 355–364 [CrossRef] [Google Scholar]
  107. B. Ekmekci, A.E. Tekkaya, A. Erden, A semi-empirical approach for residual stresses in electric discharge machining (EDM), Int. J. Mach. Tools Manuf. 46 (2006) 858–868 [CrossRef] [Google Scholar]
  108. M. Kunieda, W. Kowaguchi, T. Takita, Reverse simulation of die-sinking EDM, CIRP Manuf. Technol. 48 (1999) 115–118 [CrossRef] [Google Scholar]
  109. M.K. Pradhan, C.K. Biswas, Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISI D2 steel, Int. J. Adv. Manuf. Technol. 50 (2010) 591–610 [CrossRef] [Google Scholar]
  110. J. Mai, L. Peng, X. Lai, Z. Lin, Electrical-assisted embossing process for fabrication of micro-channels on 316L stainless steel plate, J. Mater. Process. Technol. 213 (2013) 314–321 [CrossRef] [Google Scholar]
  111. I. Puertas, C.J. Luis, L. Álvarez, Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC–Co, J. Mater. Process. Technol. 153–154 (2004) 1026–1032 [CrossRef] [Google Scholar]
  112. K.M.G. Rao, G. Rangajanardha, D.H. Rao, M.S. Rao, Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm, J. Mater. Process. Technol. 209 (2009) 1512–1520 [CrossRef] [Google Scholar]
  113. K.T. Chiang, Modelling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic, Int. J. Adv. Manuf. Technol. 37 (2008) 523–533 [CrossRef] [Google Scholar]
  114. K.T. Chiang, F.P. Chang, D.C. Tsai, Modelling and analysis of the rapidly resolidified layer of SG cast iron in the EDM process through the response surface methodology, J. Mater. Process. Technol. 182 (2007) 525–533 [CrossRef] [Google Scholar]
  115. B. Bhattacharyya, S. Gangopadhyay, B.R. Sarkar, Modelling and analysis of EDMed job surface integrity, J. Mater. Process. Technol. 189 (2007) 169–177 [CrossRef] [Google Scholar]
  116. Z. Yongshun, Z. Xingquan, L. Xianbing, Y. Kazuoi, Geometric modelling of the linear motor driven electrical discharge machining (EDM) die-sinking process, Int. J. Mach. Tools Manuf. 44 (2004) 1–9 [CrossRef] [Google Scholar]
  117. H.T. Sánchez, M. Estrems, F. Faura, Development of an inversion model for establishing EDM input parameters to satisfy material removal rate, electrode wear ratio and surface roughness, Int. J. Adv. Manuf. Technol. 57 (2011) 189–201 [CrossRef] [Google Scholar]
  118. H. Ramasawmy, L. Blunt, Effect of EDM process parameters on 3D surface topography, J. Mater. Process. Technol. 148 (2004) 155–164 [CrossRef] [Google Scholar]
  119. P.K. Patowari, P. Saha, P.K. Mishra, Taguchi analysis of surface modification technique using W–Cu powder metallurgy sintered tools in EDM and characterization of the deposited layer, Int. J. Adv. Manuf. Technol. 54 (2011) 593–604 [CrossRef] [Google Scholar]
  120. A.K. Vikas Roy, K. Kumar, Effect and optimization of various machine process parameters on the surface roughness in EDM for an EN41 material using Grey–Taguchi, Procedia Mater. Sci. 6 (2014) 383–390 [CrossRef] [Google Scholar]
  121. T.A. El-Taweel, Multi-response optimization of EDM with Al-Cu-Si-TiC P/M composite electrode, Int. J. Adv. Manuf. Technol. 44 (2009) 100–113 [CrossRef] [Google Scholar]
  122. U. Çaydaş, A. Hasçalik, Modelling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology, Int. J. Adv. Manuf. Technol. 38 (2008) 1148–1156 [CrossRef] [Google Scholar]
  123. P.K. Patowari, P. Saha, P.K. Mishra, Artificial neural network model in surface modification by EDM using tungsten-copper powder metallurgy sintered electrodes, Int. J. Adv. Manuf. Technol. 51 (2010) 627–638 [CrossRef] [Google Scholar]
  124. A.M. Gadalla, B. Bozkurt, Expanding heat source model for thermal spalling of TiB2 in electrical discharge machining, J. Mater. Res. 7 (1992) 2853–2858 [CrossRef] [Google Scholar]
  125. B. Kishan, B.S. Premkumar, S. Gajanana, K. Buchaiah, M.A. Gaffar, Development of mathematical model for metal removal rate on EDM using copper & brass electrodes, Mater. Today Proc. 5 (2018) 4345–4352 [CrossRef] [Google Scholar]
  126. U. Maradia, A. Benavoli, M. Boccadoro, C. Bonesana, M. Klyuev, M. Zaffalon, K. Wegener, EDM drilling optimisation using stochastic techniques, Procedia CIRP 67 (2018) 350–355 [CrossRef] [Google Scholar]
  127. A. Abdolahi, M. Risto, R. Haas, Non-dimensional analysis and optimization of EDM drilling process, using an innovative function, Procedia CIRP 68 (2018) 248–253 [CrossRef] [Google Scholar]
  128. R.B. Bhosle, S.B. Sharma, Multi-performance optimization of micro-EDM drilling process of Inconel 600 alloy, Mater Today 4 (2017) 1988–1997 [CrossRef] [Google Scholar]
  129. D. Dhupal, S. Naik, S.R. Das, Modelling and optimization of Al–SiC MMC through EDM process using copper and brass electrodes, Mater. Today, 5 (2018) 11295–11303 [CrossRef] [Google Scholar]
  130. N. Nagaraju, S. Venkatesu, N.G. Ujwala, Optimization of process parameters of EDM process using fuzzy logic and Taguchi methods for improving material removal rate and surface finish, Mater. Today 5 (2018) 7420–7428 [CrossRef] [Google Scholar]
  131. B. Shao, K.P. Rajurkar, Modelling of the crater formation in micro-EDM, Procedia CIRP 33 (2015) 376–381 [CrossRef] [Google Scholar]
  132. S. Parsana, N. Radadia, M. Sheth, N. Sheth, V. Savsani, N.E. Prasad, T. Ramprabhu, Machining parameter optimization for EDM machining of Mg-RE-Zn-Zr alloy using multi-objective passing vehicle search algorithm, Arch. Civil Mech. Eng. 18 (2018) 799–817 [CrossRef] [Google Scholar]
  133. C. Prakash, S. Singh, M. Singh, K. Verma, B. Chaudhary, S. Singh, Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy, Vacuum 158 (2018) 180–190 [CrossRef] [Google Scholar]
  134. G. Ramanan, J.E.R. Dhas, Multi objective optimization of wire EDM machining parameters for AA7075-PAC composite using grey-fuzzy technique, Mater. Today 5 (2018) 8280–8289 [CrossRef] [Google Scholar]
  135. K.R. Aharwal, C.M. Krishna, Optimization of material removal rate and surface roughness in EDM machining of metal matrix composite using genetic algorithm, Mater. Today 5 (2018) 5391–5397 [CrossRef] [Google Scholar]
  136. M. Manjaiah, S. Narendranath, S. Basavarajappa, A review on machining of titanium based alloys using EDM and WEDM, Rev. Adv. Mater. Sci. 36 (2014) 89–111 [Google Scholar]
  137. I. Maher, A.A. Sarhan, M. Hamdi, Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining, Int. J. Adv. Manuf. Technol. 76 (2015) 329–351 [CrossRef] [Google Scholar]
  138. R. Bajaj, A.K. Tiwari, A.R. Dixit, Current trends in electric discharge machining using micro and nano powder materials: a review, Mater. Today 2 (2015) 3302–3307 [CrossRef] [Google Scholar]
  139. S. Chakraborty, V. Dey, S.K. Ghosh, A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics, Precis. Eng. 40 (2015) 1–6 [CrossRef] [Google Scholar]
  140. T. Muthuramalingam, B. Mohan, A review on influence of electrical process parameters in EDM process, Arch. Civil Mech. Eng. 15 (2015) 87–94 [CrossRef] [Google Scholar]
  141. S. Mohal, H. Kumar, S.K. Kansal, Nano-finishing of materials by powder mixed electric discharge machining (PMEDM): a review, Sci. Adv. Mater. 7 (2015) 2234–2255 [CrossRef] [Google Scholar]
  142. K. Santarao, C.L.V.R.S.V. Prasad, S.N. Gurugubelli, Influence of nano and micro powders in electric discharge machining: a review, J. Manuf. Technol. Res. 8 (2017) 11–20 [Google Scholar]
  143. Q. Liu, Q. Zhang, M. Zhang, J. Zhang, Review of size effects in micro electrical discharge machining, Precis. Eng. 44 (2016) 29–40 [CrossRef] [Google Scholar]
  144. M.R. Shabgard, A. Gholipoor, H. Baseri, A review on recent developments in machining methods based on electrical discharge phenomena, Int. J. Adv. Manuf. Technol. 87 (2016) 2081–2097 [CrossRef] [Google Scholar]
  145. A. Banu, M. Ali Y., Electrical discharge machining (EDM): a review, Int. J. Eng. Mater. Manuf. 1 (2016) 3–10 [Google Scholar]
  146. M. Gangil, M.K. Pradhan, Modeling and optimization of electrical discharge machining process using RSM: a review, Mater. Today 4 (2017) 1752–1761 [CrossRef] [Google Scholar]
  147. A.A.A. Aliyu, A.M. Abdul-Rani, T.L. Ginta, C. Prakash, E. Axinte, M.A. Razak, S. Ali, A review of additive mixed-electric discharge machining: current status and future perspectives for surface modification of biomedical implants, Adv. Mater. Sci. Eng. 2017 (2017) 8723239 [Google Scholar]
  148. M. Hourmand, A.A. Sarhan, M. Sayuti, Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review, Int. J. Adv. Manuf. Technol. 91 (2017) 1023–1056 [CrossRef] [Google Scholar]
  149. D.B. Meshram, Y.M. Puri, Review of research work in die sinking EDM for machining curved hole, J. Brazil. Soc. Mech. Sci. Eng. 39 (2017) 2593–2605 [CrossRef] [Google Scholar]
  150. A.R.M. Aidil, M. Minhat, N.I.S. Hussein, Current research trends in wire electrical discharge machining (WEDM): a review, J. Adv. Manuf. Technol. 12 (2018) 11–24 [Google Scholar]
  151. L. Selvarajan, M. Manohar, J.A.R. Jayachandran, P. Mouri, P. Selvakumar, A review on less tool wear rate and improving surface quality of conductive ceramic composites by spark EDM, Mater. Today 5 (2018) 5774–5782 [CrossRef] [Google Scholar]
  152. A.M. Nanimina, A.M.A. Rani, T.L. Ginta, Assessment of powder mixed EDM: A review, in: MATEC Web of Conferences, EDP Sciences, 2014, Vol. 13, p. 04018 [Google Scholar]
  153. K.P. Maity, M. Choubey, A review on vibration-assisted EDM, micro-EDM and WEDM, Surf. Rev. Lett. (2018). https://doi.org/10.1142/S0218625×18300083 [Google Scholar]
  154. V. Kumar, N. Beri, A. Kumar, Electric discharge machining of titanium and alloys for biomedical implant applications: a review. Int. J. R. Anal. Rev. 5 (2018). E ISSN 2348 –1269, PRINT ISSN 2349-5138 [Google Scholar]
  155. P. Kumar, P.K. Singh, D. Kumar, V. Prakash, M. Hussain, A.K. Das, A novel application of micro-EDM process for the generation of nickel nanoparticles with different shapes, Mater. Manuf. Process. 32 (2017) 564–572 [CrossRef] [Google Scholar]
  156. A.S. Gore, N.G. Patil, Wire electro discharge machining of metal matrix composites: a review, Procedia Manuf. 20 (2018) 41–52 [CrossRef] [Google Scholar]
  157. B.C. Khatri, P. Rathod, J.B. Valaki, Ultrasonic vibration-assisted electric discharge machining: a research review, Proc. Inst. Mech. Eng. B 230 (2016) 319–330 [CrossRef] [Google Scholar]
  158. A.M. Al-Ahmari, M.S. Rasheed, M.K. Mohammed, T. Saleh, A hybrid machining process combining micro-EDM and laser beam machining of nickel–titanium-based shape memory alloy, Mater. Manuf. Process. 31 (2016) 447–455 [CrossRef] [Google Scholar]
  159. X.D. Cao, B.H. Kim, C.N. Chu, Micro-structuring of glass with features less than 100 µm by electrochemical discharge machining, Precis. Eng. 33 (2009) 459–465 [CrossRef] [Google Scholar]
  160. R. Renjith, L. Paul, A review on magnetic field assisted micro machining, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, Vol. 396, p. 012074 [Google Scholar]
  161. N.K. Singh, P.M. Pandey, K.K. Singh, M.K. Sharma, Steps towards green manufacturing through EDM process: a review, Cogent Eng. 3 (2016) 1272662 [Google Scholar]
  162. M.S. Packianather, C.H. Le, D.T. Pham, H.Q. Le, Advanced micro and nano manufacturing technologies used in medical domain, in: International Conference on the Development of Biomedical Engineering in Vietnam, June 27, 2017, Springer, Singapore, pp. 637–642 [Google Scholar]
  163. A. Singh, R. Singh, A. Singh, R. Singh, Effect of powder mixed electric discharge machining (PMEDM) on various materials with different powders: a review, Int. J. Innov. Res. Sci. Technol. 2 (2015) 164Y169. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.