Open Access
Issue
Manufacturing Rev.
Volume 6, 2019
Article Number 3
Number of page(s) 10
DOI https://doi.org/10.1051/mfreview/2019001
Published online 22 February 2019
  1. D. Radaj, Welding residual stress and distortion, Heat Effects of Welding, Springer, Berlin, 1992, pp. 129–246 [Google Scholar]
  2. Z. Pan et al., Turning induced residual stress prediction of AISI 4130 considering dynamic recrystallization, Mach. Sci. Technol. 22 (2018) 507–521 [CrossRef] [Google Scholar]
  3. D. Deng, FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects, Mater. Des. 30 (2009) 359–366 [CrossRef] [Google Scholar]
  4. Z. Pan, S.Y. Liang, H. Garmestani, Finite element simulation of residual stress in machining of Ti-6Al-4V with a microstructural consideration, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 2018. DOI: doi.org/10.1177/0954405418769927 [Google Scholar]
  5. G. Schajer, Measurement of non-uniform residual stresses using the hole-drilling method. Part I: stress calculation procedures, J. Eng. Mater. Technol. 110 (1988) 338–343 [CrossRef] [Google Scholar]
  6. A. Giri, M. Mahapatra, On the measurement of sub-surface residual stresses in SS 304L welds by dry ring core technique, Measurement 106 (2017) 152–160 [CrossRef] [Google Scholar]
  7. P.S. Prevey, X-ray diffraction residual stress techniques, Metals Handbook, American Society for Metals, Ohio, 1986, pp. 380–392 [Google Scholar]
  8. A. Allen et al., Neutron diffraction methods for the study of residual stress fields, Adv. Phys. 34 (1985) 445–473 [CrossRef] [Google Scholar]
  9. D. Crecraft, The measurement of applied and residual stresses in metals using ultrasonic waves, J. Sound Vib. 5 (1967) 173–192 [CrossRef] [Google Scholar]
  10. M. Hayes, R.S. Rivlin, Surface waves in deformed elastic materials, Arch. Rational Mech. Anal. 8 (1961) 358 [CrossRef] [Google Scholar]
  11. I.C. Noyan, J.B. Cohen, Residual stress: measurement by diffraction and interpretation, Springer, Berlin, 2013 [Google Scholar]
  12. A. Karabutov et al., Laser ultrasonic diagnostics of residual stress, Ultrasonics 48 (2008) 631–635 [CrossRef] [Google Scholar]
  13. Y. Javadi, M. Akhlaghi, M.A. Najafabadi, Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates, Mater. Des. 45 (2013) 628–642 [CrossRef] [Google Scholar]
  14. R. King, C. Fortunko, Determination of in-plane residual stress states in plates using horizontally polarized shear waves, J. Appl. Phys. 54 (1983) 3027–3035 [CrossRef] [Google Scholar]
  15. Y. Iwashimizu, O. Kobori, The Rayleigh wave in a finitely deformed isotropic elastic material, J. Acoust. Soc. Am. 64 (1978) 910–916 [CrossRef] [Google Scholar]
  16. M. Hirao, H. Fukuoka, K. Hori, Acoustoelastic effect of Rayleigh surface wave in isotropic material, J. Appl. Mech. 48 (1981) 119–124 [CrossRef] [Google Scholar]
  17. G.T. Mase, G. Johnson, An acoustoelastic theory for surface waves in anisotropic media, J. Appl. Mech. 54 (1987) 127–135 [CrossRef] [Google Scholar]
  18. J. Lothe, D. Barnett, On the existence of surface-wave solutions for anisotropic elastic half-spaces with free surface, J. Appl. Phys. 47 (1976) 428–433 [CrossRef] [Google Scholar]
  19. Y. Zhan et al., Residual stress in laser welding of TC4 titanium alloy based on ultrasonic laser technology, Appl. Sci. 8 (2018) 1997 [CrossRef] [Google Scholar]
  20. M. Duquennoy et al., Ultrasonic characterization of residual stresses in steel rods using a laser line source and piezoelectric transducers, NDT & E Int. 34 (2001) 355–362 [CrossRef] [Google Scholar]
  21. E. Tanala et al., Determination of near surface residual stresses on welded joints using ultrasonic methods, NDT & E Int. 28 (1995) 83–88 [Google Scholar]
  22. J.A. Johnson, N.M. Carlson, A laser/EMAT concurrent weld inspection system, Review of Progress in Quantitative Nondestructive Evaluation, Springer, Berlin, 1991, pp. 2097–2104 [CrossRef] [Google Scholar]
  23. D.A. Oursler, J.W. Wagner, Narrow-band hybrid pulsed laser/EMAT system for non-contact ultrasonic inspection using angled shear waves, Review of Progress in Quantitative Nondestructive Evaluation, Springer, Berlin, 1995, pp. 553–560 [Google Scholar]
  24. J. Wang, Q. Feng, Residual stress determination of rail tread using a laser ultrasonic technique, Laser Phys. 25 (2015) 056104 [CrossRef] [Google Scholar]
  25. S. Dixon, C. Edwards, S.B. Palmer, A laser-EMAT system for ultrasonic weld inspection, Ultrasonics 37 (1999) 273–281 [CrossRef] [Google Scholar]
  26. C. Ye et al., Welding induced residual stress evaluation using laser-generated Rayleigh waves, AIP Conference Proceedings, AIP Publishing, College Park, MD, 2018 [Google Scholar]
  27. H.D. Hibbitt, P.V. Marcal, A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure, Comput. Struct. 3 (1973) 1145–1174 [CrossRef] [Google Scholar]
  28. P. Tekriwal, J. Mazumder, Finite element analysis of three-dimensional transient heat transfer in GMA welding, Welding J. 67 (1988) 150s–156s [Google Scholar]
  29. J. Chen, B. Young, B. Uy, Behavior of high strength structural steel at elevated temperatures, J. Struct. Eng. 132 (2006) 1948–1954 [CrossRef] [Google Scholar]
  30. D. Stamenković, I. Vasović, Finite element analysis of residual stress in butt welding two similar plates, Sci. Tech. Rev. 59 (2009) 57–60 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.