Open Access
Manufacturing Rev.
Volume 6, 2019
Article Number 4
Number of page(s) 9
Published online 15 March 2019
  1. K. Nakayama, M. Arai, T. Kanda, Machining characteristics of hard materials, CIRP Ann. Manuf. Technol. 37 (1988) 89–92 [CrossRef] [Google Scholar]
  2. H. Tonshoff, C. Arendt, R.B. Amor, Cutting of hardened steel, CIRP Ann. Manuf. Technol. 49 (2000) 547–566 [CrossRef] [Google Scholar]
  3. W. Grzesik, Machining of hard materials, in: J. Paulo Davim (Ed.), Machining Fundamentals and Recent Advances, Springer-Verlag, London, 2008, pp. 97–126 [Google Scholar]
  4. S.G. Larsson, Hard Turning Economics, Technical report. Seco Tool Advanced Material Expert (2015) [Google Scholar]
  5. S. Chinchanikar, S.K. Choudhury, Machining of hardened steel − experimental investigations, performance modeling and cooling techniques: a review, Int. J. Mach. Tools Manuf. 89 (2015) 95–109 [Google Scholar]
  6. V.P. Astakhov, Machining of hard materials - definitions and industrial applications, in: J. Paulo Davim (Ed.), Machining of Hard Materials, Springer-Verlag, London, 2011, pp. 1–32 [Google Scholar]
  7. E. Benedicto, D. Carou, E.M. Rubio, Technical, economic and environmental review of the lubrication/cooling systems used in machining processes, Proc Eng. 184 (2017) 99–116 [CrossRef] [Google Scholar]
  8. Fundamentals of hard turning, GOSIGER. [Google Scholar]
  9. Y. Huang, Y.K. Chou, S.Y. Liang, CBN tool wear in hard turning: a survey on research progresses, Int. J. Adv. Manuf. Technol. 35 (2006) 443–453 [CrossRef] [Google Scholar]
  10. F. Klocke, E. Brinskmeier, K. Weinert, Capability profile of hard cutting and grinding processes, CIRP Ann. Manuf. Technol. 54 (2005) 22–45 [CrossRef] [Google Scholar]
  11. G. Bartarya, S.K. Choudhury, State of the art in hard turning, Int. J. Mach. Tools Manuf. 53 (2012) 1–14 [CrossRef] [Google Scholar]
  12. H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.-F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization, Measurement 45 (2012) 344–353 [Google Scholar]
  13. A. Hosseini, H.A. Kishawy, Cutting tool materials and tool wear, in: J. Paulo Davim (Ed.), Machining of Titanium Alloys, Springer-Verlag, Berlin, Heidelberg, 2014, pp. 31–56 [Google Scholar]
  14. M. Dogra, V.S. Sharma, J. Dureja, Effect of tool geometry variation on finish turning − a review, J. Eng. Sci. Technol. Rev. 4 (2011) 1–13 [CrossRef] [Google Scholar]
  15. T. Zhao, J.M. Zhou, V. Bushlya, J.E. Ståhl, Effect of cutting edge radius on surface roughness and tool wear in hard turning of AISI 52100 steel, Int. J. Adv. Manuf. Technol. 91 (2017) 3611–3618 [CrossRef] [Google Scholar]
  16. H. Saglam, S. Yaldiz, F. Unsacar, The effect of tool geometry and cutting speed on main cutting force and tool tip temperature, Mater. Des. 28 (2007) 101–111 [CrossRef] [Google Scholar]
  17. W.J. Endres, R.K. Kountanya, The effects of corner radius and edge radius on tool flank wear, J. Manuf. Process. 4 (2002) 89–96 [CrossRef] [Google Scholar]
  18. J.M. Zhou, H. Walter, M. Andersson, J.E. Stahl, Effect of chamfer angle on wear of PCBN cutting tool, Int. J. Mach. Tools Manuf. 43 (2003) 301–305 [CrossRef] [Google Scholar]
  19. J. Guddat, R. M'Saoubi, P. Alm, D. Meyer, Hard turning of AISI 52100 using PCBN wiper geometry inserts and the resulting surface integrity, Proc. Eng. 19 (2011) 118–124 [CrossRef] [Google Scholar]
  20. A. Davoudinejad, M.Y. Noordin, Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools, J. Mech. Sci. Technol. 28 (2014) 4727–4736 [CrossRef] [Google Scholar]
  21. X.M. Anthony, Analysis of cutting force and chip morphology during hard turning of AISI D2 steel, J. Eng. Sci. Technol. 10 (2015) 282–290 [Google Scholar]
  22. O. Zerti, M.A. Yallese, R. Khettabi, K. Chaoui, T. Mabrouki, Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method, Int. J. Adv. Manuf. Technol. 89 (2016) 1915–1934 [Google Scholar]
  23. H. Aouici, A. Khellaf, S. Smaiah, M. Elbah, B. Fnides, M.A. Yallese, Comparative assessment of coated and uncoated ceramic tools on cutting force components and tool wear in hard turning of AISI H11 steel using Taguchi plan and RMS, Sādhanā 42 (2017) 2157–2170 [Google Scholar]
  24. S.P. Paul, A.S. Varadarajan, Performance evaluation of hard turning of AISI 4340 steel with minimal fluid application in the presence of semi-solid lubricants, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 227 (2012) 738–748 [CrossRef] [Google Scholar]
  25. S.K. Sahu, P.C. Mishra, K. Orra, A.K. Sahoo, Performance assessment in hard turning of AISI 1015 steel under spray impingement cooling and dry environment, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 229 (2014) 251–265 [CrossRef] [Google Scholar]
  26. M. Mia, N.R. Dhar, Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method, Int. J. Adv. Manuf. Technol. 88 (2016) 739–753 [CrossRef] [Google Scholar]
  27. M. Nouioua, M.A. Yallese, R. Khettabi, S. Belhadi, M.L. Bouhalais, F. Girardin, Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN), Int. J. Adv. Manuf. Technol. 93 (2017) 2485–2504 [Google Scholar]
  28. Y. Kaynak, A. Gharibi, Progressive tool wear in cryogenic machining: the effect of liquid nitrogen and carbon dioxide, J. Manuf. Mater. Process. 2 (2018) 31 [Google Scholar]
  29. A. Panda, S.R. Das, D. Dhupal, Experimental investigation, modelling and optimization in hard turning of high strength low alloy steel (AISI 4340), Matér. Tech. 106 (2018) 1–17 [Google Scholar]
  30. M. Mia, N.R. Dhar, Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition, Neural Comput. Appl. (2017). DOI: 10.1007/s00521-017-3192-4 [Google Scholar]
  31. D. Singh, P. Venkateswara Rao, Performance improvement of hard turning with solid lubricants, Int. J. Adv. Manuf. Technol. 38 (2008) 529–535 [CrossRef] [Google Scholar]
  32. A.E. Diniz, J.R. Ferreira, F.T. Filho, Influence of refrigeration/lubrication condition on SAE 52100 hardened steel turning at several cutting speeds, Int. J. Mach. Tools Manuf. 43 (2003) 317–326 [CrossRef] [Google Scholar]
  33. M. Mia, P.R. Dey, M.S. Hossain, M.T. Arafat, M. Asaduzzaman, M. Shoriat Ullah, S.M. Tareq Zobaer, Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition, Measurement 122 (2018) 380–391 [CrossRef] [Google Scholar]
  34. W.V. Leadebal, Jr., A.C.A. de Melo, A.J. de Oliveira, N.A. Castro, Effects of cryogenic cooling on the surface integrity in hard turning of AISI D6 steel, J. Braz. Soc. Mech. Sci. Eng. 40 (2018) 15 [CrossRef] [Google Scholar]
  35. R. Suresh, S. Basavarajappa, Effect of process parameters on tool wear and surface roughness during turning of hardened steel with coated ceramic tool, Proc. Mater. Sci. 5 (2014) 1450–1459 [CrossRef] [Google Scholar]
  36. R.W. Bin, S. Goel, J.P. Davim, S.N. Joshi, Parametric design optimization of hard turning of AISI 4340 steel (69 HRC), Int. J. Adv. Manuf. Technol. 82 (2016) 451–462 [CrossRef] [Google Scholar]
  37. H. Bensouilah, H. Aouici, I. Meddour, M. Athmane, Performance of coated and uncoated mixed ceramic tools in hard turning process, Measurement 82 (2016) 1–18 [CrossRef] [Google Scholar]
  38. K. Bouacha, M.A. Yallese, T. Mabrouki, J.-F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool, Int. J. Refract. Met. Hard Mater. 28 (2010) 349–361 [CrossRef] [Google Scholar]
  39. S.R. Das, A. Kumar, D. Dhupal, Experimental investigation on cutting force and surface roughness in machining of hardened AISI 52100 steel using cBN tool, Int. J. Mach. Mach. Mater. 18 (2016) 501–521 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.