Issue
Manufacturing Rev.
Volume 6, 2019
Special Issue - The emerging materials and processing technologies
Article Number 5
Number of page(s) 13
DOI https://doi.org/10.1051/mfreview/2019003
Published online 22 March 2019
  1. V.V. Popov, G. Muller-Kamskii, A. Kovalevsky, G. Dzhenzhera, E. Strokin, A. Kolomiets, J. Ramon, Design and 3D-printing of titanium bone implants: Brief review of approach and clinical cases, Biomed. Eng. Lett. 8 (2018) 337–344 [CrossRef] [Google Scholar]
  2. V. Popov Jr., G. Muller-Kamskii, A. Katz-Demyanetz, A. Kovalevsky, S. Usov, D. Trofimcow, G. Dzhenzhera, A. Koptyug, Additive manufacturing to veterinary practice: Recovery of bony defects after the osteosarcoma resection in canines, Biomed. Eng. Lett. (2019), doi: 10.1007/s13534-018-00092-7 [Google Scholar]
  3. K. Satish Prakash, T. Nancharaih, V.V. Subba Rao, Additive manufacturing techniques in manufacturing – An overview, Mater. Today: Proc. Part 1 5 (2018) 3873–3882 [CrossRef] [Google Scholar]
  4. T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part B: Eng. 143 (2018) 172–196 [CrossRef] [Google Scholar]
  5. N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, Progress in additive manufacturing on new materials: A review, J. Mater. Sci. Technol. 35 (2019) 242–269 [CrossRef] [Google Scholar]
  6. S. Lathabai, Chapter 2 – Additive manufacturing of aluminium-based alloys and composites, in: R.N. Lumley (Ed), Woodhead Publishing Series in Metals and Surface Engineering, Fundamentals of Aluminium Metallurgy, Woodhead Publishing, 2018, pp. 47–92 [CrossRef] [Google Scholar]
  7. V.V. Popov, A. Katz-Demyanetz, A. Garkun, M. Bamberger, The effect of powder recycling on the mechanical properties and microstructure of electron beam melted Ti–6Al–4V specimens, Addit. Manuf. 22 (2018) 834–843 [CrossRef] [Google Scholar]
  8. N. Pushilina, M. Syrtanov, E. Kashkarov, T. Murashkina, V. Kudiiarov, R. Laptev, A. Lider, A. Koptyug, Influence of manufacturing parameters on microstructure and hydrogen sorption behavior of electron beam melted titanium Ti-6Al-4V alloy, Materials 11 (2018) 763 [CrossRef] [Google Scholar]
  9. H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, B.E. Stucker, Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting, J. Mater. Eng. Perform. 22 (2013) 3872–3883 [CrossRef] [Google Scholar]
  10. V. Popov, A. Katz-Demyanetz, M. Bamberger, Heat transfer and phase formation through EBM 3D-Printing of Ti–6Al–4V cylindrical parts, Defect Diffus. Forum 383 (2018) 190–195 [CrossRef] [Google Scholar]
  11. A. Adeyemi, E.T. Akinlabi, R.M. Mahamood, Powder bed based laser additive manufacturing process of stainless steel: A review, Mater. Today: Proc. Part 3 5 (2018) 18510–18517 [CrossRef] [Google Scholar]
  12. L.E. Rännar, A. Koptyug, J. Olsén, K. Saeidi, Z. Shen, Hierarchical structures of stainless steel 316 L manufactured by electron beam melting, Addit. Manuf. 17 (2017) 106–112 [CrossRef] [Google Scholar]
  13. A. Bohlen, H. Freiße, M. Hunkel, F. Vollertsen, Additive manufacturing of tool steel by laser metal deposition, Proced. CIRP 74 (2018) 192–195 [CrossRef] [Google Scholar]
  14. D. Wang, C. Yu, X. Zhou, J. Ma, W. Liu, Z. Shen, Dense pure tungsten fabricated by selective laser melting, Appl. Sci. 7 (2017) 430 [CrossRef] [Google Scholar]
  15. V. Livescu, C.M. Knapp, G.T. Gray, R.M. Martinez, B.M. Morrow, B.G. Ndefru, Additively manufactured tantalum microstructures, Materialia 1 (2018) 15–24 [CrossRef] [Google Scholar]
  16. J.A. Gonzalez, J. Mireles, S.W. Stafford, M.A. Perez, C.A. Terrazas, R.B. Wicker, Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies, J. Mater. Process. Technol. 264 (2019) 200–210 [CrossRef] [Google Scholar]
  17. P. Nandwana, A.M. Elliott, D. Siddel, A. Merriman, W.H. Peter, S.S. Babu, Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges, Curr. Opin. Solid State Mater. Sci. 12 (2017) 1–12 [Google Scholar]
  18. M. Turker, D. Godlinski, F. Petzoldt, Effect of production parameters on the properties of Ni 718 superalloy by three-dimensional printing, Mater. Charact. 59 (2008) 1728–1735 [CrossRef] [Google Scholar]
  19. N. Peeyush, M. Elliott, D. Siddel, A. Merriman, W.H. Peter, Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges, Curr. Opin. Solid State Mater. Sci. 21 (2017) 207–218 [CrossRef] [Google Scholar]
  20. A. Mostafaei, E.L. Stevens, E.T. Hughes, S.D. Biery, C. Hilla, M. Chmielus, Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties, J. Mater. Des. 108 (2016) 126–135 [CrossRef] [Google Scholar]
  21. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, X. Zeng, The microstructure and mechanical properties of deposited-IN718 by selective laser melting, J. Alloy. Compd. 513 (2012) 518–523 [CrossRef] [Google Scholar]
  22. V. Ocelik, N. Janssen, S.N. Smith, J.Th.M. De Hosson, Additive manufacturing of high-entropy alloys by laser processing, JOM 68 (2016) 1810–1818 [CrossRef] [Google Scholar]
  23. X. Li, Additive manufacturing of advanced multi-component alloys: Bulk metallic glasses and high entropy alloys, Adv. Eng. Mater. 20 (2018) 1700874 [CrossRef] [Google Scholar]
  24. Q. Chao, J. Joseph, P. Hodgson, D. Fabijanic, Direct laser manufactured high entropy alloys, IWHEM-2017 Digest book, School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, India, 2017, p. 24 [Google Scholar]
  25. R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P.K. Liaw, Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting, Intermetallics 94 (2018) 165–171 [CrossRef] [Google Scholar]
  26. Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scr. Mater. 154 (2018) 20–24 [CrossRef] [Google Scholar]
  27. Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing, Scr. Mater. 99 (2015) 93–96 [CrossRef] [Google Scholar]
  28. V.V. Popov, A. Katz-Demyanetz, A. Koptyug, M. Bamberger, Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend, Heliyon 5 (2019) e01188 [CrossRef] [Google Scholar]
  29. K. Kuwabara, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, A. Chiba, Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting, Addit. Manuf. 23 (2018) 264–271 [CrossRef] [Google Scholar]
  30. A. Koptyug, L.-E. Rannar, M. Backstorm, R. Langlet, Bulk metallic glass manufacturing using electron beam melting, Proceedings from Additive Manufacturing & 3D Printing, Nottingham, UK, 2013 [Google Scholar]
  31. E. Williams, N. Lavery, Laser processing of bulk metallic glass: A review, J. Mater. Process. Technol. 247 (2017) 73–91 [CrossRef] [Google Scholar]
  32. Arcam EBM, A GE additive company, Available from http://www.arcam.com/ [Google Scholar]
  33. A. Koptioug, L.E. Rännar, M. Bäckström, Z.J. Shen, New metallurgy of additive manufacturing in metal: Experiences from the material and process development with electron beam melting technology (EBM), Mater. Sci. Forum. 879 (2016) 996–1001 [CrossRef] [Google Scholar]
  34. X. Gong, T. Anderson, K. Chou, Review on powder-based electron beam additive manufacturing technology, Manuf. Rev. 1 (2014) 2 [Google Scholar]
  35. V.M. Dovbysh, P.V. Zabednov, M.A. Zlenko, Additivnye tekhnologii i izdeliya iz metalla [Additive technologies and metal products], Russia “NAMI” (in Russian), Caster Lib. 9 (2014) 14–71 [Google Scholar]
  36. X. Zhao, D. Gu, C. Ma, L. Xi, H. Zhang, Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites, Vacuum 160 (2019) 189–196 [CrossRef] [Google Scholar]
  37. O.D. Neikov, Chapter 13 – Powders for additive manufacturing processing, in: O. Neikov, S. Naboychenko, N.V. Yefimov (Eds), Handbook of non-ferrous metal powders (2nd Edition), Elsevier, Amsterdam, Netherlands, 2019, pp. 373–399 [CrossRef] [Google Scholar]
  38. V. Popov, A. Koptyug, I. Radulov, F. Maccari, G. Muller, Prospects of additive manufacturing of rare-earth and non-rare-earth permanent magnets, Proced. Manuf. 21 (2018) 100–108 [CrossRef] [Google Scholar]
  39. A. Koptyug, M. Bäckström, C. Botero, V. Popov, E. Chudinova, Developing new materials for electron beam melting: Experiences and challenges, Mater. Sci. Forum 941 (2018) 2190–2195 [CrossRef] [Google Scholar]
  40. A. Koptyug, L.-E. Rännar, C. Botero, M. Bäckström, V. Popov, Blended powders can be successfully used in electron beam melting yielding unique material compositions, EuroPM2018 Proceedings, European Powder Metallurgy Association (EPMA), Bilbao, Spain, 2018 [Google Scholar]
  41. J. Pegues, M.l Roach, R.S. Williamson, N. Shamsaei, Surface roughness effects on the fatigue strength of additively manufactured Ti–6Al–4V, Int. J. Fatigue 116 (2018) 543–552 [CrossRef] [Google Scholar]
  42. A.M. Rausch, M. Markl, C. Körner, Predictive simulation of process windows for powder bed fusion additive manufacturing: Influence of the powder size distribution, Comput. Math. Appl. (2018), doi: 10.1016/j.camwa.2018.06.029 [Google Scholar]
  43. V. Popov, A. Katz-Demyanetz, A. Garkun, G. Muller, E. Strokin, H. Rosenson, Effect of hot isostatic pressure treatment on the electron-beam melted Ti–6Al–4V specimens, Proced. Manuf. 21 (2018) 125–132 [CrossRef] [Google Scholar]
  44. P. Tyagi, T. Goulet, C. Riso, R. Stephenson, N. Chuenprateep, J. Schlitzer, C. Benton, F. Garcia-Moreno, Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing, Addit. Manuf. 25 (2019) 32–38 [CrossRef] [Google Scholar]
  45. I.Y. Grubova, M.A. Surmeneva, A.A. Ivanova, K. Kravchuk, O. Prymak, M. Epple, V. Buck, R.A. Surmenev, The effect of patterned titanium substrates on the properties of silver-doped hydroxyapatite coatings, Surf. Coat. Technol. 276 (2015) 595–601 [CrossRef] [Google Scholar]
  46. M. Peszka, Hirtenberger hirtisation technology provides speed and automatic post-processing (in Polish), 2018, Available from https://www.centrumdruku3d.xyz/artykul/technologia-hirtisation-hirtenberger-zapewnia-szybkosc-i-automatyzacje-post-processingu/2114 [Google Scholar]
  47. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108 (2016) 36–45 [CrossRef] [Google Scholar]
  48. K. Lin, L. Yuan, D. Gu, Influence of laser parameters and complex structural features on the bio-inspired complex thin-wall structures fabricated by selective laser melting, J. Mater. Process. Technol. 267 (2019) 34–43 [CrossRef] [Google Scholar]
  49. J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends, J. Mater. Sci. Technol. 35 (2019) 270–284 [CrossRef] [Google Scholar]
  50. L. Mugwagwa, D. Dimitrov, S. Matope, I. Yadroitsev, Influence of process parameters on residual stress related distortions in selective laser melting, Proced. Manuf. 21 (2018) 92–99 [CrossRef] [Google Scholar]
  51. R. Dehoff, M. Kirka, W.J. Sames, H. Bilheux, A. Tremsin, L. Lowe, S. Babu, Site specific control of crystallographic grain orientation through electron beam additive manufacturing, Mater. Sci. Technol. 31 (2015) 931–938 [CrossRef] [Google Scholar]
  52. Y. Zhong, L.-E. Rännar, S. Wikman, A. Koptyug, L. Liu, D. Cui, Z. Shen, Additive manufacturing of ITER first wall panel parts by two approaches: Selective laser melting and electron beam melting, Fusion Eng. Des. 116 (2017) 24–33 [CrossRef] [Google Scholar]
  53. Q.B. Nguyen, Z. Zhu, B.W. Chua, W. Zhou, J. Wei, S.M.L. Nai, Development of WC-Inconel composites using selective laser melting, Arch. Civ. Mech. Eng. 18 (2018) 1410–1420 [CrossRef] [Google Scholar]
  54. I. Gibson, D. Rosen, B. Stucker, Binder jetting, in: Additive Manufacturing Technologies, Springer, New York, USA, 2015, pp. 205–218 [CrossRef] [Google Scholar]
  55. M.P. Paranthaman, C.S. Shafer, A.M. Elliott, D.H. Siddel, M.A. McGuire, R.M. Springfield, J. Martin, R. Fredette, J. Ormerod, Binder jetting: A novel NdFeB bonded magnet fabrication process, JOM 68 (2016) 1978–1982 [CrossRef] [Google Scholar]
  56. A. Mostafaei, P. Rodriguez, I. Nettleship, M. Chmielus, Effect of powder size distribution on densification and microstructural evolution of binder-jet 3D-printed alloy 625, Mater. Des. 162 (2019) 375–383 [CrossRef] [Google Scholar]
  57. P. Kunchala, K. Kappagantula, 3D printing high density ceramics using binder jetting with nanoparticle densifiers, Mater. Des. 155 (2018) 443–450 [CrossRef] [Google Scholar]
  58. P. Enrique, Y. Mahmoodkhani, E. Marzbanrad, E. Toyserkani, N. Zhou, In situ formation of metal matrix composites using binder jet additive manufacturing (3D printing), Mater. Lett. 232 (2018) 179–182 [CrossRef] [Google Scholar]
  59. A. Mostafaei, S. Vardhan, R. Neelapu, C. Kisailus, L. Nath, T. Jacobs, M. Chmielus, Characterizing surface finish and fatigue behavior in binder-jet 3D-printed nickel-based superalloy 625, Addit. Manuf. 24 (2018) 200–209 [CrossRef] [Google Scholar]
  60. N. Larianovsky, V.V. Popov Jr., A. Katz-Demyanetz, A. Fleisher, D.E. Meyers, S. Chaudhuri, Production of Al metal matrix composites reinforced with carbon nanotubes by two-stage melt-based HPDC – CE Method, ASME, J. Eng. Mater. Technol. 141 (2018) 011002 [CrossRef] [Google Scholar]
  61. M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications, Adv. Eng. Mater. 5 (2003) 419–427 [CrossRef] [Google Scholar]
  62. J. Hu, K. Zhang, Q. Yang, H. Cheng, S. Liu, Y. Yang, Fretting behaviors of interface between CFRP and coated titanium alloy in composite interference-fit joints under service condition, Mater. Des. 134 (2017) 91–102 [CrossRef] [Google Scholar]
  63. V.V. Popov Jr., A. Katz-Demyanetz, A. Kovalevsky, R. Biletskiy, E. Strokin, A. Garkun, M. Bamberger, Effect of the hatching strategies on mechanical properties and microstructure of SEBM manufactured Ti–6Al–4V specimens, Lett. Mater. 8 (2018) 468–472 [CrossRef] [Google Scholar]
  64. T.M. Angeliu, J.T. Ward, J.K. Witter, Assessing the effects of radiation damage on Ni-base alloys for the prometheus space reactor system, J. Nucl. Mater. 366 (2007) 223–237 [CrossRef] [Google Scholar]
  65. Z. Huda, P. Edi, Materials selection in design of structures and engines of supersonic aircrafts: A review, Mater. Des. 46 (2013) 552–560 [CrossRef] [Google Scholar]
  66. M. Perruta, P. Carona, M. Thomasa, A. Couret, High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys, C.R. Phys. 19 (2018) 657–671 [CrossRef] [Google Scholar]
  67. Y.C. Lin, D.X. Wen, J. Deng, G. Liu, J. Chen, Constitutive models for high-temperature flow behaviors of a Ni-based superalloy, Mater. Des. 59 (2014) 115–123 [CrossRef] [Google Scholar]
  68. B.C. Behera, H. Alemayehu, S. Ghosh, P.V. Rao, A comparative study of recent lubri-coolant strategies for turning of Ni-based superalloy, J. Manuf. Process. 30 (2017) 541–552 [CrossRef] [Google Scholar]
  69. Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy, Vacuum 137 (2017) 104–114 [CrossRef] [Google Scholar]
  70. Y. Behnamian et al., A comparative study on corrosion behavior of stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 °C, Corros. Sci. 106 (2016) 188–207 [CrossRef] [Google Scholar]
  71. L. Garcia-Fresnillo, A. Chyrkin, C. Bo, J. Barnikel, F. Schmitz, W.J. Quadakkers, Oxidation behaviour and microstructural stability of alloy 625 during long-term exposure in steam, J. Mater. Sci. 49 (2014) 6127–6142 [CrossRef] [Google Scholar]
  72. T.M. Pollock, N. Rene, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties, J. Propuls. Power 22 (2006) 361–374 [CrossRef] [Google Scholar]
  73. R.C. Reed, The superalloys: Fundamentals and applications, Cambridge University Press, Cambridge, UK, 2006 [CrossRef] [Google Scholar]
  74. Special Metals Corporation, Available from http://www.specialmetals.com/ [Google Scholar]
  75. C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, C.C. Tai, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy, Mater. Sci. Eng. A 510–511 (2009) 289–294 [CrossRef] [Google Scholar]
  76. P.K. Pedro, Ö. Utkudeniz, C. Jessica, M.C. José, G.M. Martha, High-temperature deformation of delta-processed Inconel 718, J. Mater. Process. Tech. 255 (2018) 204–211 [CrossRef] [Google Scholar]
  77. S. Kumar, G.S. Rao, K. Chattopadhyay, G.S. Mahobia, N.C.S. Srinivas, V. Singh, Effect of surface nanostructure on tensile behavior of superalloy IN718, Mater. Des. 62 (2014) 76–82 [CrossRef] [Google Scholar]
  78. M.D. Mathew, P. Parameswaran, K. Bhanu, S. Rao, Microstructural changes in alloy 625 during high temperature creep, Mater. Charact. 59 (2008) 508–513 [CrossRef] [Google Scholar]
  79. Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, Y. Sun, S. Liu, E. Aghaie, Y. Zeng, M. Chmielus, W. Zheng, D. Guzonas, W. Chen, J. Li Luo, A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 °C, Corros. Sci. 106 (2016) 188–207 [CrossRef] [Google Scholar]
  80. T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties, J. Propuls. Power 22 (2006) 361–374 [CrossRef] [Google Scholar]
  81. F. Christin, CMC materials for space and aeronautical applications. Ceramic matrix composites, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008, pp. 327–351 [Google Scholar]
  82. A. Sommers, Q. Wang, X. Han, C. T'Joen, Y. Park, A. Jacobi, Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems – A review, Appl. Therm. Eng. 30 (2010) 1277–1291 [CrossRef] [Google Scholar]
  83. I. Ahmad, B. Yazdani, Y. Zhu, Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites, Nanomaterials 5 (2015) 90–114 [CrossRef] [Google Scholar]
  84. S. Fan, C. Yang, L. He, Y. Du, W. Krenkel, P. Greil, N. Travitzky, Progress of ceramic matrix composites brake materials for aircraft application, Rev. Adv. Mater. Sci. 44 (2016) 313–325 [Google Scholar]
  85. L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites, ACS Nano. 5 (2011) 3182–3190 [CrossRef] [Google Scholar]
  86. J. Liu, H. Yan, K. Jiang, Mechanical properties of graphene platelet-reinforced alumina ceramic composites, Ceram. Int. 39 (2013) 6215–6221 [CrossRef] [Google Scholar]
  87. B. Heidenreich, C/SiC and C/C-SiC composites, ceramic matrix composites, John Wiley & Sons Inc., Hoboken, NJ, USA, 2014, pp. 147–216 [Google Scholar]
  88. B.L. Wing, J.W. Halloran, Microstress in the matrix of a melt-infiltrated SiC/SiC ceramic matrix composite, J. Am. Ceram. Soc. 38 (2017) 42–49 [Google Scholar]
  89. N. Al Nasiri, N. Patra, N. Ni, D.D. Jayaseelan, W.E. Lee, Oxidation behaviour of SiC/SiC ceramic matrix composites in air, J. Eur. Ceram. Soc. 36 (2016) 3293–3302 [CrossRef] [Google Scholar]
  90. C. Haase, F. Tang, M.B. Wilms, A. Weisheit, B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design, Mater. Sci. Eng. A 688 (2017) 180–189 [CrossRef] [Google Scholar]
  91. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303 [CrossRef] [Google Scholar]
  92. Y.P. Wang, B.S. Li, H.Z. Fu, Solid solution or intermetallics in a high-entropy alloy, Adv. Eng. Mater. 11 (2009) 641–644 [CrossRef] [Google Scholar]
  93. Y. Zhang, X. Yang, P.K. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM 64 (2012) 830–838 [CrossRef] [Google Scholar]
  94. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698–706 [CrossRef] [Google Scholar]
  95. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Compd. 509 (2011) 6043–6048 [CrossRef] [Google Scholar]
  96. O.N. Senkov, S.V. Senkova, C.F. Woodward, D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis, Acta Mater. 61 (2013) 1545–1557 [CrossRef] [Google Scholar]
  97. O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A 529 (2011) 311–320 [CrossRef] [Google Scholar]
  98. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074 [CrossRef] [Google Scholar]
  99. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Compd. 509 (2011) 6043–6048 [CrossRef] [Google Scholar]
  100. O.N. Senkov, S.L. Semiatin, Microstructure and properties of a refractory high-entropy alloy after cold working, J. Alloy. Compd. 649 (2015) 1110–1123 [CrossRef] [Google Scholar]
  101. P.K. Liaw, F. Zhang, National Energy Technology Laboratory Research: Experimental and computational investigation of high-entropy alloys for elevated high-temperature applications, Grant presentation FE-0008855, University of Tennessee at Knoxville, USA, 2016 [Google Scholar]
  102. M.A. Hemphill, Fatigue behavior of high entropy alloys, Master's Thesis, University of Tennessee, Knoxville, 2012 [Google Scholar]
  103. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074 [CrossRef] [Google Scholar]
  104. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Compd. 509 (2011) 6043–6048 [CrossRef] [Google Scholar]
  105. N. Larianovsky, A. Katz-Demyanetz, E. Eshed, M. Regev, Microstructure, tensile and creep properties of Ta20Nb20Hf20Zr20Ti20 high entropy alloy, Materials 10 (2017) 883 [CrossRef] [Google Scholar]
  106. E. Eshed, N. Larianovsky, A. Kovalevsky, V. Popov Jr., I. Gorbachev, V. Popov, A. Katz-Demyanetz, Microstructural evolution and phase formation in 2nd-generation refractory-based high entropy alloys, Materials 11 (2018) 75 [CrossRef] [Google Scholar]
  107. E. Eshed, N. Larianovsky, A. Kovalevsky, A. Katz-Demyanetz, Effect of Zr on the microstructure of second- and third-generation BCC HEAs, JOM 71 (2019) 673–682 [CrossRef] [Google Scholar]
  108. S.-H. Sun, Y. Koizumi, S. Kurosu, Y.-P. Li, H. Matsumoto, A. Chiba, Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting, Acta Mater. 64 (2014) 154–168 [CrossRef] [Google Scholar]
  109. T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials, Mater. Lett. 159 (2015) 12–15 [CrossRef] [Google Scholar]
  110. T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment, Mater. Lett. 189 (2017) 148–151 [CrossRef] [Google Scholar]
  111. H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting, Mater. Sci. Eng.: A 656 (2016) 39–46 [CrossRef] [Google Scholar]
  112. H.S. Chen, Thermodynamic considerations on the formation and stability of metallic glasses, Acta Met. 22 (1974) 1505–1511 [CrossRef] [Google Scholar]
  113. M. Telford, The case of bulk metallic glasses, Mater. Today 7 (2004) 36–43 [CrossRef] [Google Scholar]
  114. W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng.: R 44 (2004) 45–89 [CrossRef] [Google Scholar]
  115. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279–306 [CrossRef] [Google Scholar]
  116. J. Cheney, K. Vecchio, Prediction of glass-forming compositions using liquidus temperature calculations, Mater. Sci. Eng. A 471 (2007) 135–143 [CrossRef] [Google Scholar]
  117. M.M. Trexler, N.N. Thadhami, Mechanical properties of bulk metallic glasses, Progress Mater. Sci. 55 (2010) 759–839 [CrossRef] [Google Scholar]
  118. N. Chantarapanich, A. Laohaprapanon, S. Wisutmethangoon, P. Jiamwatthanachai, P. Chalermkarnnon, S. Sucharitpwatskul, P. Puttawibul, K. Sitthiseripratip, Fabrication of three-dimensional honeycomb structure for aeronautical applications using selective laser melting: A preliminary investigation, Rapid Prototyp. J. 20 (2014) 551–558 [CrossRef] [Google Scholar]
  119. D. Khrapov, M. Surmeneva, A. Koptioug, S. Evsevleev, F. Léonard, G. Bruno, R. Surmenev, X-ray computed tomography of multiple-layered scaffolds with controlled gradient cell lattice structures fabricated via additive manufacturing, J. Phys. Conf. Ser. 1145 (2019) 012044 [CrossRef] [Google Scholar]
  120. A. Panesar, M. Abdi, D. Hickman, I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Addit. Manuf. 19 (2018) 81–94 [CrossRef] [Google Scholar]
  121. Y. Wang, L. Zhang, S. Daynes, H. Zhang, S. Feih, M. Yu Wang, Design of graded lattice structure with optimized mesostructures for additive manufacturing, Mater. Des. 142 (2018) 114–123 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.