Open Access
Review
Issue
Manufacturing Rev.
Volume 6, 2019
Article Number 19
Number of page(s) 27
DOI https://doi.org/10.1051/mfreview/2019016
Published online 14 June 2019
  1. M. Hrelja, S. Klancnik, T. Irgolic, M. Paulic, J. Balic, M. Brezocnik, Turning parameters optimization using particle swarm optimization, J. Proc. Eng. 69 (2014) 670–677 [CrossRef] [Google Scholar]
  2. H.A. El-Hofy, Advanced Machining Processes, McGraw-Hill, New York, USA, 2005 [Google Scholar]
  3. R. Baptista, J.F.A. Simoes, Three and five axes milling of sculptured surfaces, J. Mat. Process. Technol. 103 (2000) 398–403 [CrossRef] [Google Scholar]
  4. K. Hamdy, M.K. Mohamed, G. Abouelmagd, New electrode profile for machining of internal cylindrical surfaces by electrochemical drilling, Int. J. Control. Autom. Syst. 2 (2013) 2165–8277 [Google Scholar]
  5. T. Wagner, High rate electrochemical dissolution of iron-based alloys in NaCl and NaNO3 electrolytes, Ph.D. Thesis, School of Chemistry, University of Stuttgart, Germany, 2002 [Google Scholar]
  6. A.M. Ibrahim, Investigation of Some Electrochemical Machining Parameters for Internal Conical Shapes, M. Sc. Thesis, Faculty of Engineering, Minia University, Egypt, 2011 [Google Scholar]
  7. J.A. McGeough, Principles of Electrochemical Machining, Chapman and Hall Ltd., London, UK, 1974 [Google Scholar]
  8. C.F. Gutiérrez-González, M. Suarez, S. Pozhidaev, S. Rivera, P. Peretyagin, W. Solís, L.A. Díaz, A. Fernandez, R. Torrecillas, Effect of TiC addition on the mechanical behavior of Al2O3-SiC whiskers composites obtained by SPS, J. Eur. Ceram. Soc. 36 (2016) 2149–2152 [CrossRef] [Google Scholar]
  9. W. Grzesik, Cutting tool materials, Adv. Mach. Processes Metallic Mater. 2 (2017) 35–63 [Google Scholar]
  10. G.T. Smith, Cutting Tool Technology, Springer, London, UK 2008 [Google Scholar]
  11. B. Zhao, H. Liu, C. Huang, J. Wang, M. Cheng, Fabrication and mechanical properties of Al2O3-SiCw − TiCnp ceramic tool material, Ceram. Int. 43 (2017) 10224–10230 [CrossRef] [Google Scholar]
  12. M. Mohammadpour, P. Abachi, K. Pourazarang, Effect of cobalt replacement by nickel on functionally graded cemented carbonitrides, Int. J. Refract. Met. Hard Mater. 30 (2012) 42–47 [CrossRef] [Google Scholar]
  13. E.D. Whitney, Ceramic Cutting Tools: Materials, Development, and Performance, William Andrew Publishing, Norwich, USA, 1995 [Google Scholar]
  14. T. Kitagawa, A. Kubo, K. Maekawa, Temperature and wear of cutting tools in high-speed machining of Incone1718 and Ti-6A1-6V-2Sn, Wear 202 (1997) 142–148 [CrossRef] [Google Scholar]
  15. L. Li, N. He, M. Wang, Z.G. Wang, High-speed cutting of Inconel 718 with coated carbide and ceramic inserts, J. Mater. Process. Technol. 129 (2002) 127–130 [CrossRef] [Google Scholar]
  16. G. Schneider Jr., Cutting Tools Application, 2009, http://www.toolingandproduction.com/web/home.php [Google Scholar]
  17. J. Zhao, 25-the use of ceramic matrix composites for metal cutting applications, Adv. Ceram. Matrix Compos. 2 (2014) 623–654 [CrossRef] [Google Scholar]
  18. D.H. Jack, Ceramic cutting tool materials, Mater. Des. 7 (1986) 267–273 [CrossRef] [Google Scholar]
  19. J. Gonzalez-Julian, J. Schneider, P. Miranzo, M.I. Osendi, M. Belmonte, Enhanced tribological performance of silicon nitride-based materials by adding carbon nanotubes, J. Am. Ceram. Soc. 94 (2011) 2542–2548 [CrossRef] [Google Scholar]
  20. G.D. Quinn, J. Salem, I. Bar-on, K. Cho, M. Fotey, H. Fang, Fracture toughness of advanced ceramics at room temperature, J. Res. Natl. Inst. Stand. Technol. 97 (1992) 579–607 [CrossRef] [Google Scholar]
  21. M. Cheng, H. Lia, B. Zhao, C. Huang, P. Yao, B. Wang, Mechanical properties of two types of Al2O3/TiC ceramic cutting tool material at room and elevated temperatures, Ceram. Int. 43 (2017) 13869–13874 [CrossRef] [Google Scholar]
  22. E.D. Whitney, Ceramic Cutting Tools: Materials, Development, and Performance, William Andrew Publishing, Norwich, USA, 1995 [Google Scholar]
  23. D.A. Stephenson, J.S. Agapiou, Metal Cutting Theory and Practice, 3rd edn., CRC Press Taylor & Francis Group, New York, USA, 2016 [Google Scholar]
  24. Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, J. Wang, Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material, Mater. Sci. Eng. A. 577 (2013) 9–15 [CrossRef] [Google Scholar]
  25. J. Barry, G. Byrne, Cutting tool wear in the machining of hardened steels Part I: alumina/TiC cutting tool wear, Wear 247 (2001) 139–151 [CrossRef] [Google Scholar]
  26. Y.L. Dong, F.M. Xu, X.L. Shi, C. Zhang, Z.J. Zhang, J.M. Yang, Y. Tan, Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites, Mat. Sci. Eng. A. 501 (2009) 49–54 [CrossRef] [Google Scholar]
  27. H. Awaji, S.-M. Choi, E. Yagi, Mechanisms of toughening and strengthening in ceramic-based nanocomposites, Mech. Mater. 34 (2002) 411–422 [CrossRef] [Google Scholar]
  28. V. Bushlya, J. Zhou, P. Avdovic, J.-E. Stahl, Wear mechanisms of silicon carbide-whisker-reinforced alumina (Al2O3-SiCw) cutting tools when high-speed machining aged Alloy 718, Int. J. Adv. Manuf. Technol. 68 (2013) 1083–1093 [CrossRef] [Google Scholar]
  29. Y.M. Ko, W.T. Kwona, Y.-W. Kim, Development of Al2O3-SiC composite tool for machining application, Ceram. Int. 30 (2004) 2081–2086 [CrossRef] [Google Scholar]
  30. L. Xuefei, L. Hanlian, H. Chuanzhen, Z. Bin, Z. Longwei, High-temperature mechanical properties of Al2O3-based ceramic tool material toughened by SiC whiskers and nanoparticles, Ceram. Int. 43 (2017) 1160–1165 [CrossRef] [Google Scholar]
  31. Z. Li, J. Zhao, J. Sun, F. Gong, X. Ni, Reinforcement of Al2O3/TiC ceramic tool material by multi-layer graphene, Ceram. Int. 43 (2017) 11421–11427 [CrossRef] [Google Scholar]
  32. D. Wang, C. Xue, Y. Cao, J. Zhao, Fabrication and cutting performance of an Al2O3/TiC/TiN ceramic cutting tool in turning of an ultra-high-strength steel, Int. J. Adv. Manuf. Technol. 91 (2017) 1967–1976 [CrossRef] [Google Scholar]
  33. J. Liu, H. Yan, K. Jiang, Mechanical properties of graphene platelet-reinforced alumina ceramic composites, Ceram. Int. 39 (2013) 6215–6221 [CrossRef] [Google Scholar]
  34. J.W. An, D.H. You, D.S. Lim, Tribological properties of hot-pressed alumina − CNT composites, Wear 255 (2003) 677–681 [CrossRef] [Google Scholar]
  35. B.I. Smirnov, V.I. Nikolaev, T.S. Orlova, V.V. Shpeizman, A.R. Arellano-Lopez, K.C. Goretta, D. Singh, J.L. Routbort, Mechanical properties and microstructure of an Al2O3-SiC-TiC composite, Mat. Sci. Eng. A 242 (1998) 292–295 [CrossRef] [Google Scholar]
  36. W. Liu, Q. Chu, R. He, M. Huang, H. Wu, Q. Jiang, J. Chen, X. Deng, S. Wu, Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools, Ceram. Int. 44 (2018) 2209–2215 [CrossRef] [Google Scholar]
  37. P. Švec, A. Brusilová, J. Kozánková, Effect of microstructure and mechanical properties on wear resistance of silicon nitride ceramics, Mater. Eng. 16 (2008) 34–40 [Google Scholar]
  38. D.-H. Choi, B.-K. Moon, R.-J. Sung, S.-H. Kim, K. Niihara, Mechanical and thermal properties of silicon nitride hot pressed with adding rare-earth oxides, Mater. Sci. Forum 486–487 (2005) 181–184 [CrossRef] [Google Scholar]
  39. L. Kvetkova, A. Duszova, P. Hvizdos, J. Dusza, P. Kun, C. Balazsi, Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites, Scr. Mater. 66 (2012) 793–796 [CrossRef] [Google Scholar]
  40. A.S. Kumar, A.R. Durai, T. Sornakumar, Development of alumina-ceria ceramic composite cutting tool, Int. J. Refract. Met. Hard Mater. 22 (2004) 17–20 [CrossRef] [Google Scholar]
  41. X. Tian, J. Zhao, N. Zhu, Y. Dong, J. Zhao, Preparation and characterization of Si3N4/(WTi)C nano-composite ceramic tool materials, Mater. Sci. Eng. A. 596 (2014) 255–263 [CrossRef] [Google Scholar]
  42. G.M. Zheng, J. Zhao, Y.H. Zhou, Z.J. Gao, X.B. Cui, A.H. Li, Fabrication and characterization of Sialon-Si3N4 graded nano-composite ceramic tool materials, Compos. Part B 42 (2011) 1813–1820 [CrossRef] [Google Scholar]
  43. G. Zheng, J. Zhao, Z. Gao, Q. Cao, Cutting performance and wear mechanisms of Sialon-Si3N4 graded nano-composite ceramic cutting tools, Int. J. Adv. Manuf. Technol. 58 (2012) 19–28 [CrossRef] [Google Scholar]
  44. G. Tu, S. Wu, J. Liu, Y. Long, B. Wang, Cutting performance and wear mechanisms of Sialon ceramic cutting tools at high-speed dry turning of gray cast iron, Int. J. Refract. Met. Hard Mater. 54 (2016) 330–334 [CrossRef] [Google Scholar]
  45. X. Tian, J. Zhao, Z. Gong, Y. Dong, Effect of cutting speed on cutting forces and wear mechanisms in high-speed face milling of Inconel 718 with Sialon ceramic tools, Int. J. Adv. Manuf. Technol. 69 (2013) 2669–2678 [CrossRef] [Google Scholar]
  46. Z. Hao, Y. Fan, J. Lin, F. Ji, X. Liu, New observations on wear mechanism of self-reinforced SiAlON ceramic tool in milling of Inconel 718, Arch. Civil Mech. Eng. 17 (2017) 467–474 [CrossRef] [Google Scholar]
  47. Y. Cheng, Y. Zhang, T. Wan, Z. Yin, J. Wang, Mechanical properties and toughening mechanisms of graphene platelets reinforced Al2O3/TiC composite ceramic tool materials by microwave sintering, Mat. Sci. Eng. A 680 (2017) 190–196 [CrossRef] [Google Scholar]
  48. W-M. Guo, J.-J. Yu, M. Xiong, S.-H. Wu, H.-T. Lin, High-toughness Lu2O3-doped Si3N4 ceramics by seeding, Ceram. Int. 42 (2016) 6495–6499 [CrossRef] [Google Scholar]
  49. S.L. Casto, E.L. Valvo, E. Lucchini, S. Maschio, V.F. Ruisi, Wear rates and wear mechanisms of alumina-based tools cutting steel at a low cutting speed, Wear 208 (1997) 67–72 [CrossRef] [Google Scholar]
  50. S.J. Lee, S. Baek, Effect of SiO2 content on the microstructure, mechanical and dielectric properties of Si3N4 ceramics, Ceram. Int. 42 (2016) 9921–9925 [CrossRef] [Google Scholar]
  51. B. Bitterlich, S. Bitsch, K. Friederich, SiAlON based ceramic cutting tools, J. Eur. Ceram. Soc. 28 (2008) 989–994 [CrossRef] [Google Scholar]
  52. S. Gandotra, J. Singh, S.S. Gill, Investigation of wear behavior on coated and non-coated carbide inserts subjected to low temperature treatment, J. Metall. Eng. 1 (2011) 1–16 [Google Scholar]
  53. S. Kumar, N.K. Khedkar, B. Jagtap, T.P. Singh, The effects of cryogenic treatment on cutting tools, IOP Conf. Series: Mater. Sci. Eng. 225 (2017) 1–9 [Google Scholar]
  54. J. Dusza, J. Morgiel, A. Duszová, L. Kvetková, M. Nosko, P. Kun, C. Balázsi, Microstructure and fracture toughness of Si3N4+ graphene platelet composites, J. Eur. Ceram. Soc. 32 (2012) 3389–3397 [CrossRef] [Google Scholar]
  55. C.H. Xu, Y.M. Feng, R.B. Zhang, X. Xiao, G.T. Yu, Wear behavior of Al2O3/Ti(C, N)/SiC new ceramic tool material when machining tool steel and cast iron, J. Mater. Process. Technol. 209 (2009) 4633–4637 [CrossRef] [Google Scholar]
  56. Y. Liu, C. Huang, B. Zou, H. Liu, G. Liu, High-temperature flexural strength and reliability of Ti (C5N5) − TiB2-(W7Ti3) C composite cermet tool material, Ceram. Int. 43 (2017) 12511–12518 [CrossRef] [Google Scholar]
  57. G. Zhao, C. Huang, H. Liu, L. Xu, X. Chong, B. Zou, H. Zhu, A study on in situ growth of TaC whiskers in Al2O3 matrix powder for ceramic cutting tools, Mater. Res. Bull. 47 (2012) 2027–2031 [CrossRef] [Google Scholar]
  58. Y.M. Ko, W.T. Kwona, Y.-W. Kim, Development of Al2O3-SiC composite tool for machining application, Ceram. Int. 30 (2004) 2081–2086 [CrossRef] [Google Scholar]
  59. B.L. Strahin, G.L. Doll, Tribological coatings for improving cutting tool performance, Surf. Coat. Technol. 336 (2018) 117–122 [CrossRef] [Google Scholar]
  60. J.M. Zhou, V. Bushlya, J.E. Stahl, An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools, J. Mater. Process. Technol. 212 (2012) 372–384 [CrossRef] [Google Scholar]
  61. S.L. Casto, E.L. Valvo, E. Lucchini, S. Maschio, M. Piacentini, V.F. Ruisi, Ceramic materials wear mechanisms when cutting nickel-based alloys, Wear 225–229 (1999) 227–233 [CrossRef] [Google Scholar]
  62. X. Maohua, H. Ning, L. Liang, Modeling notch wear of ceramic tool in high-speed machining of nickel-based superalloy, J. Wuhan Univ. Technol. Mater. Sci. Ed. 25 (2010) 78–83 [CrossRef] [Google Scholar]
  63. P. Hvizdos, J. Dusza, C. Balázsi, Tribological properties of Si3N4-graphene nanocomposites, J. Eur. Ceram. Soc. 33 (2013) 2359–2364 [CrossRef] [Google Scholar]
  64. I. Schulz, M. Herrmann, I. Endler, I. Zalite, B. Speisser, J. Kreusser, Nano Si3N4 composites with improved tribological properties, Lubric. Sci. 21 (2009) 69–81 [CrossRef] [Google Scholar]
  65. L.N. López de Lacalle, A. Lamikiz, J. Fernández de Larrinoa, I. Azkona, Advanced Cutting Tools, Springer, London, UK 2011 [Google Scholar]
  66. T. Chung-Cheng, H. Hong, Comparison of the tool life of tungsten carbide coated by multi-layer TiCN and TiALCN for end mills using Taguchi method, J. Mater. Process. Technol. 123 (2002) 1–4 [CrossRef] [Google Scholar]
  67. K.-D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M'Saoubi, Cutting with coated tools: coating technologies, characterization methods and performance optimization, CIRP Ann. Manuf. Technol. 61 (2012) 703–723 [CrossRef] [Google Scholar]
  68. S. Koseki, K. Inoue, H. Usuki, Damage of physical vapor deposition coatings of cutting tools during alloy 718 turning, Prec. Eng. 44 (2016) 41–54 [CrossRef] [Google Scholar]
  69. S. Grigoriev, A. Metel, Nanostructured thin films and nanodispersion strengthened coatings, NATO Sci. Ser. II: Math. Phys. Chem. 155 (2004) 47–154 [Google Scholar]
  70. A.S. Vereschaka, S.N. Grigoriev, V.P. Tabakov, E.S. Sotova, A.A. Vereschaka, M.Y. Kulikov, Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings, Key Eng. Mater. 581 (2014) 68–73 [CrossRef] [Google Scholar]
  71. A.A. Vereschaka, S.N. Grigoriev, M.A. Volosova, A. Batako, A.S. Vereschaka, N.N. Sitnikov, A.E. Seleznev, Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools, Int. J. Adv. Manuf. Technol. 90 (2017) 27–43 [CrossRef] [Google Scholar]
  72. J. Liu, C. Ma, G. Tu, Y. Long, Cutting performance and wear mechanism of Sialon ceramic cutting inserts with TiCN coating, Surf. Coat. Technol. 307 (2016) 146–150 [CrossRef] [Google Scholar]
  73. G. Gurdial Blugan, C. Strehler, M. Vetterli, B. Ehrle, R. Duttlinger, P. Blösch, J. Kuebler, Performance of lightweight coated oxide ceramic composites for industrial high speed wood cutting tools: a step closer to market, Ceram. Int. 43 (2017) 8735–8742 [Google Scholar]
  74. S. Chinchanikar, S.K. Choudhury, Characteristic of wear, force and their inter-relationship: in process monitoring of tool within different phases of the tool life, Proc. Mater. Sci. 5 (2014) 1424–1433 [CrossRef] [Google Scholar]
  75. Y. Isik, The performance evaluation of ceramic and carbide cutting tools in machining of austemepered ductile irons, Uludag University J. Faculty Eng. 19 (2014) 67–76 [CrossRef] [Google Scholar]
  76. A. Vereschaka, S. Grigoriev, Wear 378–379 (2017) 43–57 [Google Scholar]
  77. Y. Long, J. Zeng, S. Wu, Cutting performance and wear mechanism of Ti-Al-N/Al-Cr-O coated silicon nitride ceramic cutting inserts, Ceram. Int. 40 (2014) 9615–9620 [CrossRef] [Google Scholar]
  78. K.K. Gajrani, M.R. Sankar, State of the art on micro to nano-textured cutting tools, Mater. Today Proc. 4 (2017) 3776–3785 [CrossRef] [Google Scholar]
  79. Y. Feng, J. Zhang, L. Wang, W. Zhang, Y. Tian, X. Kong, Fabrication techniques and cutting performance of micro-textured selflubricating ceramic cutting tools by in-situ forming of Al2O3-TiC, Int. J. Refract. Met. Hard Mater. 68 (2017) 121–129 [CrossRef] [Google Scholar]
  80. Y. Lian, J. Deng, G. Yan, H. Cheng, J. Zhao, Preparation of tungsten disulfide (WS2) soft-coated nano-textured self-lubricating tool and its cutting performance, Int. J. Adv. Manuf. Technol. 68 (2013) 2033–2042 [CrossRef] [Google Scholar]
  81. T. Sugihara, T. Enomoto, Improving anti-adhesion in aluminum alloy cutting by micro strip texture, Prec. Eng. 36 (2012) 229–237 [CrossRef] [Google Scholar]
  82. Y. Xing, J. Deng, J. Zhao, G. Zhang, K. Zhang, Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel, Int. J. Refract. Met. Hard Mater. 43 (2014) 46–58 [CrossRef] [Google Scholar]
  83. N. Kawasegi, H. Sugimori, H. Morimoto, N. Morita, I. Horid, Development of cutting tools with microscale and nanoscale textures to improve frictional behavior, Prec. Eng. 33 (2009) 248–254 [CrossRef] [Google Scholar]
  84. P. Rathod, S. Aravindan, R.P. Venkateswara, Performance Evaluation of Novel Micro-textured Tools in Improving the Machinability of Aluminum Alloy (Al 6063), Proc. Technol. 23 (2016) 296–303 [CrossRef] [Google Scholar]
  85. P. Rathod, S. Aravindan, R.P. Venkateswara, Performance evaluation of novel micro-textured tools in improving the machinability of aluminum alloy (Al 6063), Proc. Technol. 23 (2016) 296–303 [CrossRef] [Google Scholar]
  86. V. Kuzin, S. Grigoriev, Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material, Appl. Mech. Mater. 486 (2014) 32–35 [CrossRef] [Google Scholar]
  87. G. Wu, C. Xu, G. Xiao, M. Yi, Z. Chen, L. Xu, Self-lubricating ceramic cutting tool material with the addition of nickel coated CaF2 solid lubricant powders, Int. J. Refract. Met. Hard Mater. 56 (2016) 51–58 [CrossRef] [Google Scholar]
  88. X. Cui, J. Guo, J. Zheng, Optimization of geometry parameters for ceramic cutting tools in intermittent turning of hardened steel, Mater. Des. 92 (2016) 424–437 [CrossRef] [Google Scholar]
  89. D. Agrawal, Microwave sintering of ceramics, composites and metal powders, Woodhead Publishing Limited, USA, 2010 [Google Scholar]
  90. J. Cinert, Study of Mechanisms of the Spark Plasma Sintering Technique, PHD, Czech Technical University, Prague, Czech Republic, 2018 [Google Scholar]
  91. W.R. Matizamhuka, Spark plasma sintering (SPS) − an advanced sintering technique for structural nanocomposite materials, J. S. Afr. Inst. Min. Metall. 116 (2016) 1171–1180 [CrossRef] [Google Scholar]
  92. G.C. Wei, A. Hecker, D.A. Goodman, Translucent polycrystalline alumina with improved resistance to sodium attack, J. Am. Ceram. Soc. 84 (2001) 2853–2862 [CrossRef] [Google Scholar]
  93. N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al-Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, Spark plasma sintering of metals and metal matrix nanocomposites: a review, J. Nanomater. (2012) [Google Scholar]
  94. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006) 763–777 [Google Scholar]
  95. B.-K. Yoon, E.Y. Chin, S.-J.L. Kang, Dedensification during Sintering of BaTiO3 Caused by the Decomposition of Residual BaCO3 , J. Am. Ceram. Soc. 91 (2008) 4121–4124 [CrossRef] [Google Scholar]
  96. M. Tokita, Chapter 11.2.3–Spark Plasma Sintering (SPS) Method, Systems, and Applications, Handbook of Advanced Ceramics, 2nd edn., Materials, Applications, Processing, and Properties, 2013, 1149–1177 [Google Scholar]
  97. M. Suárez, A. Fernández, J. Menéndez, R. Torrecillas, H. Kessel, J. Hennicke, R. Kirchner, T. Kessel, Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In Sintering Applications, 1st edn.; B. Ertug, Ed., InTech, Rijeka, Croatia, 2013 [Google Scholar]
  98. A. Borrell, M.D. Salvador, Chapter 1: Advanced Ceramic Materials Sintered by Microwave Technology, Sintering Technology − Method and Application, Intech open, 2018 [Google Scholar]
  99. K. Gołombek, L.A. Dobrzański, Hard and wear resistance coatings for cutting tools, J. Achiev. Mater. Manuf. Eng. 24 (2007) 107–110 [Google Scholar]
  100. E. Gevorkyan, S. Lavrynenko, M. Rucki, Z. Siemiatkowski, M. Kislitsa, Ceramic cutting tools out of nanostructured refractory compounds, Int. J. Refract. Met. Hard Mater. 68 (2017) 142–144 [CrossRef] [Google Scholar]
  101. M. Li, C. Huang, B. Zhao, H. Liu, J. Wang, Z. Liu, Mechanical properties and microstructure of Al2O3-TiB2-TiSi2 ceramic tool material, Ceram. Int. 43 (2017) 14192–14199 [CrossRef] [Google Scholar]
  102. L. Wang, H. Liu, C. Huang, X. Liu, B. Zou, Mechanical properties and microstructure of TiN-TiB2 composite ceramic cutting tool material, Mater. Sci. Forum. 800–801 (2014) 430–434 [CrossRef] [Google Scholar]
  103. B. Zou, C. Huang, J. Song, Z. Liu, L. Liu, Y. Zhao, Effects of sintering processes on mechanical properties and microstructure of TiB2-TiC + 8 wt% nano-Ni composite ceramic cutting tool material, Mater. Sci. Eng. A. 540 (2012) 235–244 [CrossRef] [Google Scholar]
  104. Y. Fazhan, M. Guangyao, Z. Jun, A. Xing, Fabrication of WC matrix composite tool material and its cutting performance in machining titanium alloys, Tsinghua Sci. Technol. 14 (2009) 75–78 [Google Scholar]
  105. S.P. Taguchi, S. Ribeiro, Silicon nitride oxidation behavior at 1000 and 1200 °C, J. Mater. Process. Technol. 147 (2004) 336–342 [CrossRef] [Google Scholar]
  106. P. Rutkowski, L. Stobierski, D. Zientara, L. Jaworska, P. Klimczyk, M. Urbanik, The influence of the graphene additive on mechanical properties and wear of hot-pressed Si3N4matrix composites, J. Eur. Ceram. Soc. 35 (2015) 87–94 [CrossRef] [Google Scholar]
  107. Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, J. Wang, Effects of particulate metallic phase on microstructure and mechanical properties of carbide reinforced alumina ceramic tool materials, Ceram. Int. 40 (2014) 2809–2817 [CrossRef] [Google Scholar]
  108. T. Aiso, U. Wiklund, M. Kubota, S. Jacobson, Effect of Si and Al additions to carbon steel on material transfer and coating damage mechanism in turning with CVD coated tools, Wear 368–369 (2016) 379–389 [CrossRef] [Google Scholar]
  109. J. Zhao, X. Ai, X.P. Huang, Relationship between the thermal shock behavior and the cutting performance of a functionally gradient ceramic tool, J. Mater. Process. Technol. 129 (2002) 161–166 [CrossRef] [Google Scholar]
  110. J. Pfeifer, G. Sáfrán, F. Wéber, V. Zsigmond, O. Koszor, P. Arató, C. Balázsi, Tribology study of silicon nitride-based nanocomposites with carbon additions, Mater. Sci. Forum. 659 (2010) 235–238 [CrossRef] [Google Scholar]
  111. X. Tian, J. Zhao, Y. Wang, F. Gong, W. Qin, H. Pan, Fabrication and mechanical properties of Si3N4/(WTi)C/Co graded nano-composite ceramic tool materials, Ceram. Int. 41 (2015) 3381–3389 [CrossRef] [Google Scholar]
  112. J. Song, C. Huang, M. Lv, B. Zou, S. Wang, J. Wang, An effects of TiC content and melt phase on microstructure and mechanical properties of ternary TiB2-based ceramic cutting tool materials, Mater. Sci. Eng. A. 605 (2014) 137–143 [CrossRef] [Google Scholar]
  113. G. Zhao, C. Huang, N. He, H. Liu, B. Zou, Microstructure and mechanical properties at room and elevated temperatures of reactively hot pressed TiB2-TiC-SiC composite ceramic tool materials, Ceram. Int. 42 (2016) 5353–5361 [CrossRef] [Google Scholar]
  114. D. Tiwari, B. Basu, K. Biswas, Simulation of thermal and electric field evolution during spark plasma sintering, Ceram. Int. 35 (2009) 699–708 [CrossRef] [Google Scholar]
  115. R. Apetz, M.P. Bruggen, Transparent alumina: a light-scattering model, J. Am. Ceram. Soc. 86 (2003) 480–486 [CrossRef] [Google Scholar]
  116. J.G. Santanach, A. Weibel, C. Estournès, Q. Yang, C. Laurent, A. Peigney, Spark plasma sintering of alumina: study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth, Acta Mater. 59 (2011) 1400–1408 [CrossRef] [Google Scholar]
  117. A. Knaislová, P. Novák, S. Cygan, L. Jaworska, M. Cabibbo, High-Pressure Spark Plasma Sintering (HP SPS): a promising and reliable method for preparing Ti-Al-Si alloys, Materials 10 (2017) 465 [CrossRef] [Google Scholar]
  118. R. Licheri, R. Orrù, C. Musa, A.M. Locci, G. Cao, Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis, J. Alloys Compd. 478 (2009) 572–578 [CrossRef] [Google Scholar]
  119. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, Field-assisted sintering technology/ spark plasma sintering: mechanisms, materials, and technology developments, Adv. Eng. Mater. 16 (2014) 830–849 [Google Scholar]
  120. T.B. Holland, U. Anselmi-Tamburini, D.V. Quach, T.B. Tran, A.K. Mukherjee, Effects of local Joule heating during the field assisted sintering of ionic ceramics, J. Eur. Ceram. Soc. 32 (2012) 3667–3674 [CrossRef] [Google Scholar]
  121. C. Ramirez, P. Miranzo, M. Belmonte, M.I. Osendi, P. Poza, S.M. Vega-Diaz, M. Terrones, Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets, J. Eur. Ceram. Soc. 34 (2014) 161–169 [CrossRef] [Google Scholar]
  122. M. Mazaheri, D. Mari, Z.R. Hesabi, R. Schaller, G. Fantozzi, Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature, Compos. Sci. Technol. 71 (2011) 939–945 [CrossRef] [Google Scholar]
  123. J. Liu, H. Yan, M.J. Reece, K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets, J. European Ceram. Soc. 32 (2012) 4185–4193 [CrossRef] [Google Scholar]
  124. H. Kim, M. Kawahara, M. Tokita, Specimen temperature and sinterability of Ni powder by spark plasma sintering, J. Jpn. Soc. Powder Powder Metal. 47 (2000) 887–891 [CrossRef] [Google Scholar]
  125. P.R. Matli, R. Abdul-Shakoor, A.M.A. Mohamed, M. Gupta, Microwave rapid sintering of Al-metal matrix composites: a review on the effect of reinforcements, Microstruct. Mech. Prop. Metals 6 (2016) 143–162 [Google Scholar]
  126. E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, D.V. Shtansky, Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mat. Rev. 62 (2017) 203–239 [CrossRef] [Google Scholar]
  127. I. Borovinskaya, A. Gromov, E. Levashov, Y. Maksimov, A. Mukasyan, A. Rogachev, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis 1st Edition, Elsevier Science, Amsterdam, Netherlands, 2017 [Google Scholar]
  128. H.C. Yi, J.J. Moore, Self-propagating high-temperature (combusting) synthesis (SHS) of powder-compacted materials, J. Mater. Sci. 25 (1990) 1159–1168 [CrossRef] [Google Scholar]
  129. S. Vorotilo, A.Y. Potanin, I.V. Iatsyuk, E.A. Levashov, SHS of silicon-based ceramics for the high-temperature applications, Adv. Eng. Mater. 20 (2018) 8 [CrossRef] [Google Scholar]
  130. S.K. Mishra, L.C. Pathak, Self-propagating high-temperature synthesis (SHS) of advanced high-temperature ceramics, Key Eng. Mater. 395 (2009) 15–38 [CrossRef] [Google Scholar]
  131. E.A. Levashov, Yu.S. Pogozhev, D.V. Shtansky, M.I. Petrzhik, Self-propagating high-temperature synthesis of ceramic materials based on the Mn+1 AXn phases in the Ti–Cr–Al–C system, Russ. J. Non-Ferrous Met. 50 (2009) 151–159 [CrossRef] [Google Scholar]
  132. O. Keblouti, L. Boulanouar, M.W. Azizi, M.A. Yallese, Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel, Struct. Eng. Mech. 61 (2017) 519–526 [CrossRef] [Google Scholar]
  133. X. Tian, J. Zhao, J. Zhao, Z. Gong, Y. Dong, Effect of cutting speed on cutting forces and wear mechanisms in high-speed face milling of Inconel 718 with Sialon ceramic tools, Int. J. Adv. Manuf. Technol. 69 (2013) 2669–2678 [CrossRef] [Google Scholar]
  134. K.-D. Bouzakis, N. Michailidis, S. Gerardis, G. Katirtzoglou, E. Lili, M. Pappa, R. Cremer, Application of the impact test to predict coated tools' cutting performance in Milling Inconel 718, Adv. Eng. Mater. 10 (2008) 634–639 [CrossRef] [Google Scholar]
  135. A. Altin, M. Nalbant, A. Taskesen, The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools, Mater. Des. 28 (2007) 2518–2522 [Google Scholar]
  136. I. Ucun, K. Aslantasx, B. Gokcxe, F. Bedir, Effect of tool coating materials on surface roughness in micromachining of Inconel 718 super alloy, Proc. IMechE. Part B: J. Eng. Manuf. 228 (2014) 1–13 [CrossRef] [Google Scholar]
  137. B. Wang, Z. Liu, Cutting performance of solid ceramic end milling tools in machining hardened AISI H13 steel, Int. J. Refract. Met. Hard Mater. 55 (2016) 24–32 [Google Scholar]
  138. J. Xie, M.J. Luo, K.K. Wu, L.F. Yang, D.H. Li, Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool, Int. J. Mach. Tools Manuf. 73 (2013) 25–36 [CrossRef] [Google Scholar]
  139. F.M. Aneiro, R.T. Coelho, L.C. Brandão, Turning hardened steel using coated carbide at high cutting speeds, J. Braz. Soc. Mech. Sci. Eng. 30 (2008) 104–109 [CrossRef] [Google Scholar]
  140. F.F. Lima, W.F. Sales, E.S. Costa, F.J. Silva, A.A. Machado, Wear of ceramic tools when machining Inconel 751 using argon and oxygen as lubri-cooling atmospheres, Ceram. Int. 43 (2017) 677–685 [CrossRef] [Google Scholar]
  141. Z. Yin, C. Huang, J. Yuan, B. Zou, H. Liu, H. Zhu, Cutting performance and life prediction of an Al2O3/TiC micro-nano-composite ceramic tool when machining austenitic stainless steel, Ceram. Int. 41 (2015) 7059–7065 [CrossRef] [Google Scholar]
  142. D. Jianxin, S. Wenlong, Z. Hui, Y. Pei, L. Aihua, Friction and wear behaviors of the carbide tools embedded with solid lubricants in sliding wear tests and in dry cutting processes, Wear 270 (2011) 666–674 [CrossRef] [Google Scholar]
  143. T. Sugihara, H. Tanaka, T. Enomoto, Development of novel CBN cutting tool for high speed machining of Inconel 718 focusing on coolant behaviors, Proc. Manuf. 10 (2017) 436–442 [Google Scholar]
  144. T.F. Ariff, N.S. Shafie, Z.M. Zahir, Wear analysis of silicon nitride (Si3N4) cutting tool in dry machining of T6061 aluminum alloy, Appl. Mech. Mater. 268–270 (2013) 563–567 [Google Scholar]
  145. S.B. Dhage, P. Sarkar, A.D. Jayal, Investigation of surface textured cutting tools for sustainable machining, 5th Int. & 26th All India Manuf. Technol., Des. Res. Conference (AIMTDR) 2014, IIT Guwahati, Assam, India [Google Scholar]
  146. T. Baksa, T. Kroupa, P. Hanzl, M. Zetek, Durability of cutting tools during machining of very hard and solid materials, Proc. Eng. 100 (2015) 1414–1423 [CrossRef] [Google Scholar]
  147. W. Shizhu, H. Ping, Principles of Tribology, John Wiley & Sons (Asia) Pte Ltd, 1 Fusionopolis Walk, Solaris South Tower, Singa, 2012 [Google Scholar]
  148. I. Korkut, M. Boy, Experimental examination of main cutting force and surface roughness depending on cutting parameters, Strojniški vestnik − J. Mech. Eng. 54 (2008) 531–538 [Google Scholar]
  149. Y. Ma, P. Feng, J. Zhang, Z. Wu, D. Yu, Prediction of surface residual stress after end milling based on cutting force and temperature, J. Mater. Process. Technol. 235 (2016) 41–48 [CrossRef] [Google Scholar]
  150. A.A. Vereschaka, A.D. Batako, A.A. Krapostin, N.N. Sitnikov, G.V. Oganyan, Improvement in reliability of ceramic cutting tool using a damping system and nano-structured multi-layered composite coatings, Proc. CIRP 63 (2017) 563–568 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.