Open Access
Issue
Manufacturing Rev.
Volume 6, 2019
Article Number 20
Number of page(s) 17
DOI https://doi.org/10.1051/mfreview/2019019
Published online 12 July 2019
  1. R. M'Saoubi, C. Nobel, W.M. Sim, High performance cutting of advanced aerospace alloys and composite materials, CIRP Ann. Manuf. Technol. 64 (2015) 557–580 [CrossRef] [Google Scholar]
  2. S. Zhu, H. Yang, L.G. Guo et al., Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy, Mater. Char. 70 (2012) 101–110 [CrossRef] [Google Scholar]
  3. P.F. Gao, H. Yang, X.G. Fan et al., Microstructure evolution in the local loading forming of TA15 titanium alloy under non-isothermal condition [J], J. Mater. Process. Technol. 212 (2012) 2520–2528 [CrossRef] [Google Scholar]
  4. D. He, J. Zhu, S. Zaefferer et al., Effect of retained beta layer on slip transmission in Ti-6Al-2Zr-1Mo-1V near alpha titanium alloy during tensile deformation at room temperature, Mater. Des. 56 (2014) 937–942 [CrossRef] [Google Scholar]
  5. J.M. Allwood, A.E. Tekkaya, T.F. Stanistreet, The development of ring rolling technology, Steel Res. Int. 76 (2005) 111–120 [CrossRef] [Google Scholar]
  6. H. Yang, M. Wang, L.G. Guo et al., 3D coupled thermo-mechanical FE modeling of blank size effects on the uniformity of strain and temperature distributions during hot rolling of titanium alloy large rings, Comput. Mat. Sci. 44 (2009) 611–621 [CrossRef] [Google Scholar]
  7. S. Zhu, H. Yang, L. Guo et al., Research on the effects of coordinate deformation on radial-axial ring rolling process by FE simulation based on in-process control, Int. J. Adv. Manuf. Technol. 72 (2014) 57–68 [CrossRef] [Google Scholar]
  8. Z. Sun, H. Yang, X. Ou, Effects of process parameters on microstructural evolution during hot ring rolling of AISI 5140 steel, Comput. Mater. Sci. 49 (2010) 134–142 [CrossRef] [Google Scholar]
  9. G. Zhou, L. Hua, J. Lan et al., FE analysis of coupled thermo-mechanical behaviors in radial-axial rolling of alloy steel large ring, Comput. Mater. Sci. 50 (2010) 65–76 [CrossRef] [Google Scholar]
  10. X. Tang, B. Wang, H. Zhang et al., Study on the microstructure evolution during radial-axial ring rolling of IN718 using a unified internal state variable material model, Int. J. Mech. Sci. 128 (2017) 235–252 [CrossRef] [Google Scholar]
  11. S.L. Semiatin, S.L. Knisley, P.N. Fagin et al., Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V, Metal. Mater. Trans. A 34 (2003) 2377–2386 [CrossRef] [Google Scholar]
  12. Y.G. Zhou, W.D. Zeng, H.Q. Yu, An investigation of a new near-beta forging process for titanium alloys and its application in aviation components, Mater. Sci. Eng. A 393 (2005) 204–212 [CrossRef] [Google Scholar]
  13. X.G. Fan, H. Yang, P.F. Gao, Through-process macro-micro finite element modeling of local loading forming of large-scale complex titanium alloy component for microstructure prediction, J. Mater. Process. Technol. 214 (2014) 253–266 [CrossRef] [Google Scholar]
  14. L. Guo, H. Yang, Towards a steady forming condition for radial-axial ring rolling, Int. J. Mech. Sci. 53 (2011) 286–299 [CrossRef] [Google Scholar]
  15. X. Han, L. Hua, G. Zhou et al., FE simulation and experimental research on cylindrical ring rolling, J. Mater. Process. Technol. 214 (2014) 1245–1258 [CrossRef] [Google Scholar]
  16. C. Wang, H.J.M. Geijselaers, E. Omerspahic et al., Influence of ring growth rate on damage development in hot ring rolling, J. Mater. Process. Technol. 227 (2016) 268–280 [CrossRef] [Google Scholar]
  17. M. Wang, H. Yang, Z.C. Sun et al., Analysis of coupled mechanical and thermal behaviors in hot rolling of large rings of titanium alloy using 3D dynamic explicit FEM, J. Mater. Process. Technol. 209 (2009) 3384–3395 [CrossRef] [Google Scholar]
  18. N. Anjami, A. Basti, Investigation of rolls size effects on hot ring rolling process by coupled thermo-mechanical 3D-FEA, J. Mater. Process. Technol. 210 (2010) 1364–1377 [CrossRef] [Google Scholar]
  19. M. Wang, H. Yang, L. Guo et al., Effects and optimization of roll sizes in hot rolling of large rings of titanium alloy, Rare Metal Mater. Eng. 38 (2009) 393–397 [CrossRef] [Google Scholar]
  20. L. Guo, F. Wang, L. Liang et al., New idea and advances in intelligent simulation and optimization of high-performance ring rolling process, J. Netshape Form. Eng. 9 (2017) 1–11 [in Chinese] [Google Scholar]
  21. D. Yang, Research on intelligent modeling and simulation of radial-axial rolling process for large 2219 aluminum alloy ring based on force feedback control, Northwestern Polytechnical University, 2017 [in Chinese] [Google Scholar]
  22. L. Liang, L.G. Guo, X.C. Li et al., Intelligent simulation for real-timely force-controlled radial-axial rolling process of supersized aluminium alloy rings, Proc. Manuf. 15 (2018) 105–112 [Google Scholar]
  23. B. Huang, C. Li, L. Shi et al., China materials engineering canon [M]. Chemical Industry Press, Beijing, China, 2005, pp. 566–577 [in Chinese] [Google Scholar]
  24. C. Shen, Research on material constitution models of TA15 and TC11 titanium alloys in hot deformation processes, Northwestern Polytechnical University, 2007 [in Chinese] [Google Scholar]
  25. S. Zhu, Deformation and microstructure evolution in whole process of radial-axial ring rolling of TA15 titanium alloy [D]. Northwestern Polytechnical University (2015) [in Chinese] [Google Scholar]
  26. X. Song, Study on the forming features and process of large scale TA15 titanium alloy aviation structural parts, Chongqing University, 2011 [in Chinese] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.