Open Access
Manufacturing Rev.
Volume 6, 2019
Article Number 21
Number of page(s) 13
Published online 09 September 2019
  1. S. Kou, Y. Le, Nucleation mechanism and grain refining of weld metal, Welding J. 65 (1986) 63–70 [Google Scholar]
  2. M.J. Jose, S.S. Kumar, A. Sharma, Vibration assisted welding processes and their influence on quality of welds, Sci. Technol. Weld. Join. 22 (2015) 243–258 [Google Scholar]
  3. Q. Lu, L. Chen, C. Ni, Improving welded valve quality by vibratory weld conditioning, Mater. Sci. Eng. A 457 (2007) 246–253 [CrossRef] [Google Scholar]
  4. L. Qinghua, C. Ligong, N. Chunzhen, Effect of vibratory weld conditioning on welded valve properties. Mech. Mater 40 (2008) 565–574 [CrossRef] [Google Scholar]
  5. C.-C. Hsieh, C.-H. Lai, W. Wu, Effect of vibration on microstructure and mechanical properties of 304 Stainless steel GTA welds, Met. Mater. Int. 19 (2013) 835–844. [CrossRef] [Google Scholar]
  6. M. Malinowaski-Brodnicka, G. Den, W.J. Wink, Effect of magnetic fields on GTA welds in austenitic stainless steel, Weld. Res. Suppl. 52-s (1990) 52–59 [Google Scholar]
  7. C. Vives, Effect of electromagnetic vibration on the microstructure of continuously cast alloys, Mater. Sci. Eng. A 173 (1993) 169–172 [CrossRef] [Google Scholar]
  8. W. Wu, Influence of vibration frequency on solidification of weldments, Scr. Matter 42 (2000) 661–665 [CrossRef] [Google Scholar]
  9. A.S.M.Y. Munsi, A.J. Waddell, C.A. Walker, The effect of vibratory stress on the welding microstructure and residual stress distribution, J. Mater. Des. Appl. 215 (2001) 99–111 [Google Scholar]
  10. M. Sun, Y. Sun, R. Wang, Vibratory stress relieving of welded sheet steels of low alloy high strength steel, Mater. Lett. 58 (2004) 1396–1399 [CrossRef] [Google Scholar]
  11. D. Rao, D. Wang, L. Chen, The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress, Int. J. Fatig. 29 (2007) 192–196 [CrossRef] [Google Scholar]
  12. X. Jijin, C. Ligong, N. Chunzhen, Effect of vibratory welds conditioning on residual stress and distortion in the multipass girth butt welded pipes, Int. J. Press. Vessel Pip. 84 (2007) 298–303 [CrossRef] [Google Scholar]
  13. Y. Cui, C.L. X, Effect of ultrasonic vibration on unmixed zone formation. Scr. Mater 55 (2006) 957–958 [Google Scholar]
  14. B. Pucko, V. Gliha, Charpy toughness of vibrated microstructure. Original scientific paper-Izvorni Znanstveni Rad, Metalurgija 44 (2005) 103–106 [Google Scholar]
  15. Y. Lei, Z. Wang, X. Chen, Effect of ultrasound on microstructures and mechanical properties of plasma arc welded joints of SiCp/Al MMCs, Trans. Nonferrous Metals Soc. China 21 (2011) 272–277 [CrossRef] [Google Scholar]
  16. R. Dehmolaei, M. Shamanian, A. Kermanpur, Effect of electromagnetic vibration on the unmixed zone formation in 25 Cr- 35Ni heat resistant steel/Alloy 800 dissimilar welds, Mater. Charac. 59 (2008) 1814–1817 [CrossRef] [Google Scholar]
  17. K. Balasubramanian, V. Balusamykeshavan, Studies on the effect of vibration on hot cracking and grain size in AA7075 Aluminum alloy welding, Int. J. Eng. Sci. Technol. 3 (2011) 1 [Google Scholar]
  18. P. Govind Rao, P. Srinivasa Rao, A. Gopala Krishna, Mechanical properties improvement of weldments using vibratory welding system. Inst. Mech. Eng. – J. Eng. Manuf. B 229 (2014) 776–784 [Google Scholar]
  19. A. Krajewski, W. Włosiński, T. Chmielewski, P. Kołodziejczak, Ultrasonic vibration assisted arc-welding of aluminum alloys. Bull. Polish Acad. Sci. Tech. Sci. 4 (2012) 841–852 [Google Scholar]
  20. J.S. Wang, C. Hsieh, C.M. Lin, E.C. Chen, C.W. Kuo, W. Wu, The effect of residual stress relaxation of the vibratory stress relief technique on the textures of grains in AA 6061 Aluminum alloy, Mater. Sci. Eng. A 605 (2014) 98–107 [CrossRef] [Google Scholar]
  21. A. Mostafapour, V. Gholizadeh, Experimental investigation of the effect of vibration on mechanical properties of 304 stainless steel welded parts, Int. J. Adv. Manuf. Technol. 70 (2014) 1113–1124 [CrossRef] [Google Scholar]
  22. S. Amini, M. Amiri, Study of ultrasonic vibration's effect on friction stir welding, Int. J. Adv. Manufact. Technol. 73 (2014) 127–135 [CrossRef] [Google Scholar]
  23. C. Hsieh, P. Wang, J. Wang, W. Wu, Evolution of Microstructure and residual stress under various vibration modes in 304 Stainless steel welds, Sci. World J. (2014) DOI: 10.1155/2014/895790 [Google Scholar]
  24. T. Wen, S.Y. Liu, S. Che, L. Liu, C. Yang, Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy, Trans. Nonferrous Metals Soc. China 25 (2015) 397–404 [CrossRef] [Google Scholar]
  25. J. Wang, Q. Sun, L. Wu et al., Effect of ultrasonic vibration on microstructural evolution and mechanical properties of underwater wet welding joint, J. Mater. Process. Technol. 246 (2017) 185–197 [CrossRef] [Google Scholar]
  26. Y. Ye, X. Li, J. Kuang, Y. Geng, G. Tang, Effects of electropulsing assisted ultrasonic impact treatment on welded components, Mater. Sci. Technol. 31 (2015) 1583–1588 [CrossRef] [Google Scholar]
  27. M. Rahmi, M. Abbasi, Friction stir vibration welding process: modified version of friction stir welding process, Int. J. Adv. Manufact. Technol. (2016) DOI: 10.1007/s00170-016-9383-9 [Google Scholar]
  28. S.P. Tiwari, A. Shanker, Effect of longitudinal vibration on mechanical properties of mild steel weldments. Proc. Inst Mech. Eng. B: J. Eng. Manuf. 207 (1993) 173–177 [CrossRef] [Google Scholar]
  29. S. Kumar, C.S. Wu, G.K. Padhy, W. Ding, Application of ultrasonic vibrations in welding and metal processing: a status review, J. Manufact. Process. 26 (2017) 295–322 [Google Scholar]
  30. P.K. Singh, D. Patel, S.B. Prasad, Investigation on the effect of auxiliary vibrations on microstructure and mechanical properties of SMAW butt welded joints, Indian J. Eng. Mater. Sci. NISCAIR 25 (2018) 155–162 [Google Scholar]
  31. L. Shi, C. Wui, X. Liu, Modeling the effects of ultrasonic vibration on friction stir welding, J. Mater. Process. Technol. 36 (2015) 25–262 [Google Scholar]
  32. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Optimization of the friction-stir-welding process and tool parameters to attain a maximum tensile strength of AA7075-T6 aluminum alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224 (2010) 1175–1191. [CrossRef] [Google Scholar]
  33. P. Bamankar, S. Sawant, Study of the effect of process parameters on depth of penetration and bead width in SAW process, Int. J. Adv. Eng. Res. Stud. 2 (2013) 8–10 [Google Scholar]
  34. Y.H.P. Manurung, M.A. Mohamed, A.Z. Abidin, Structural life enhancement on friction stir welded AA6061 with optimized process and HFMI/PIT parameters, Int. J. Adv. Manufact. Technol. (2016) DOI: 10.1007/s00170-016-9697-7 [Google Scholar]
  35. S. Kumar, A.S. Shahi, Effect of heat input on the microstructure and the mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints, Mater. Des. 32 (2011) 3617–3623 [CrossRef] [Google Scholar]
  36. S. Mahajan, N.S. Biradar, R. Raman, S. Mishra, Effect of mechanical arc oscillation on the grain structure of mild steel weld metal, Trans. Indian Inst. Metals 65 (2012) 171–177 [CrossRef] [Google Scholar]
  37. Rahul, H.K. Arya, R.K. Saxena, Effect of cooling rate on microstructure of SAW welded mild steel plate (grade C 25 as per IS 1570), Int. J. Mod. Eng. Res. 4 (2014) 222 [Google Scholar]
  38. P. Singh, D. Patel, S.B. Prasad, Investigation on the effect of vibrations on cooling behavior and mechanical properties of SMAW butt welded joints, Sci. Bull. Ser. D (2017) 79. [Google Scholar]
  39. S. Fouladi, M. Abbasi, The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint, J. Mater. Process. Technol. 243 (2017) 23–30 [CrossRef] [Google Scholar]
  40. F. Lefebvre, C. Peyrac, G. Elbel, HFMI: understanding the mechanisms for fatigue life improvement and repair of welded structures, Weld World (2017) DOI: 10.1007/s40194-017-0455-8 [Google Scholar]
  41. A.K. Pathak, G.L. Dutta, Three-dimensional finite element analysis to predict the different zones of microstructure in submerged arc welding, Proc. Inst. Mech. Eng. J. Eng. Manuf. B 218 (2003) 269–280 [CrossRef] [Google Scholar]
  42. C. Shanjeevi, S. Satish Kumar, P. Sathiya, Multi-objective optimization of friction welding parameters in AISI 304L austenitic stainless steel and copper joints, Proc. Inst. Mech. Eng. J. Eng. Manuf. B 230 (2016) 449–457 [Google Scholar]
  43. P. Mondal, D. Bose, M. Tech, Optimization of the process parameters for mig welding of aisi 304 and is 1079 using fuzzy logic method, Int. Res. J. Eng. Technol. 2 (2015) 483–488 [Google Scholar]
  44. P.K. Singh, D. Patel, S.B. Prasad, Development of vibratory welding technique and tensile properties investigation of Shielded metal arc welded joints, Indian J. Sci. Technol. 9 (2016) DOI: 10.17485/ijst/2016/v9i35/92846 [Google Scholar]
  45. K.N.H. Yamamoto, S. Harada et al., Beneficial effects of low frequency pulsed MIG welding on grain refinement of weld metal and improvement of solidification cracking susceptibility of aluminum alloys, Weld. Int. 7 (1993) 456–461 [CrossRef] [Google Scholar]
  46. X. Liang, Y. Wan, C. Zhang, B. Zhang, X. Meng, Comprehensive evaluation of welding quality for butt-welded by means of CO2 arc vibratory welding, Int. J. Adv. Manufact. Technol. 90 (2016) 1911–1920. [CrossRef] [Google Scholar]
  47. Y.B. Zhong, C.S. Wu, G.K. Padhy, Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding, J. Mater. Process. Technol. 239 (2017) 273–283 [CrossRef] [Google Scholar]
  48. P. Kumar Singh, S. Deepak Kumar, D. Patel, S.B. Prasad, Optimization of vibratory welding process parameters using response surface methodology, J. Mech. Sci. Technol. 31 (2017) 2487–2495 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.