Open Access
Issue
Manufacturing Rev.
Volume 6, 2019
Article Number 22
Number of page(s) 11
DOI https://doi.org/10.1051/mfreview/2019009
Published online 23 September 2019
  1. G. Quan, Y. Mao, G. Li, W. Lv, Y. Wang, J. Zhou, A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress-strain curves, Comput. Mater. Sci. 55 (2012) 65–72 [CrossRef] [Google Scholar]
  2. G.E. Totten, D.S. MacKenzie, Handbook of aluminum: physical metallurgy and processes, CRC Press, Boca Raton, 2003 [CrossRef] [Google Scholar]
  3. Z. Ding, B. Li, S.Y. Liang, Material phase transformation at high heating rate during grinding, Mach. Sci. Technol. 20 (2016) 290–311 [CrossRef] [Google Scholar]
  4. H.W. Park, S.Y. Liang, Force modeling of microscale grinding process incorporating thermal effects, Int. J. Adv. Manuf. Technol. 44 (2008) 476–486 [CrossRef] [Google Scholar]
  5. J.B. Chen, Q.H. Fang, J.K. Du, C. Xie, Effect of point heat source on growth of subsurface crack induced in brittle material machining, J Therm. Stresses 40 (2017) 72–85 [CrossRef] [Google Scholar]
  6. J.C. Jaeger, Moving sources of heat and temperature at sliding contacts, J. Proc. R. Soc. N.S.W. 76 (1942) 203 [Google Scholar]
  7. D. Zhu, B. Li, H. Ding, An improved grinding temperature model considering grain geometry and distribution, Int. J. Adv. Manuf. Technol. 67 (2013) 1393–1406 [CrossRef] [Google Scholar]
  8. N.K. Kim, C. Guo, S. Malkon, Heat flux distribution and energy partition in creep-feed grinding, CIRP Ann. Manuf. Technol. 46 (1997) 227–232 [CrossRef] [Google Scholar]
  9. J. Pang, C. Wu, Y. Shen, S. Liu, Q. Wang, B. Li, Heat flux distribution and temperature prediction model for dry and wet cylindrical plunge grinding, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. (2018). DOI: 10.1177/0954405418815365 [Google Scholar]
  10. D. Wang, S. Sun, J. Jiang, X. Liu, The profile analysis and selection guide for the heat source on the finished surface in grinding, J. Manuf. Process. 30 (2017) 178–186 [CrossRef] [Google Scholar]
  11. W.B. Rowe, S.C.E. Black, B. Mills, H.S. Qi, Analysis of grinding temperatures by energy partitioning, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 210 (1996) 579–588 [CrossRef] [Google Scholar]
  12. W.B. Rowe, S.C.E. Black, B. Mills, H.S. Qi, M.N. Morgan, Experimental investigation of heat transfer in grinding, CIRP Ann. Manuf. Technol. 44 (1995) 329–332 [CrossRef] [Google Scholar]
  13. W.B. Rowe, M.N. Morgan, H.S. Qi, H.W. Zheng, The effect of deformation on the contact area in grinding, CIRP Ann. Manuf. Technol. 42 (1993) 409–412 [CrossRef] [Google Scholar]
  14. C. Guo, S. Malkin, Inverse heat transfer analysis of grinding, part 2: applications, J. Eng. Ind. 118 (1996) 143–149 [CrossRef] [Google Scholar]
  15. C. Guo, S. Malkin, Inverse heat transfer analysis of grinding, part 1: methods, J. Eng. Ind. 118 (1996) 137–142 [CrossRef] [Google Scholar]
  16. S. Kohli, C. Guo, S. Malkin, Energy partition to the workpiece for grinding with aluminum oxide and CBN abrasive wheels, J. Eng. Ind. 117 (1995) 160 [CrossRef] [Google Scholar]
  17. D. Ross-Pinnock, P.G. Maropoulos, Review of industrial temperature measurement technologies and research priorities for the thermal characterisation of the factories of the future, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230 (2016) 793–806 [CrossRef] [Google Scholar]
  18. A.T. Kuzu, K.R. Berenji, B.C. Ekim, M. Bakkal, The thermal modeling of deep-hole drilling process under MQL condition, J. Manuf. Process. 29 (2017) 194–203 [CrossRef] [Google Scholar]
  19. Y.J. Sun, J. Sun, J.F. Li, Modeling and experimental study of temperature distributions in end milling Ti6Al4V with solid carbide tool, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 231 (2017) 217–227 [CrossRef] [Google Scholar]
  20. R.S. Hahn, On the nature of the grinding process, in: Proceeding of the 3rd MTDR Conference, 1962, p. 129 [Google Scholar]
  21. H. Justinger, G. Hirt, Estimation of grain size and grain orientation influence in microforming processes by Taylor factor considerations, J. Mater. Process. Technol. 209 (2009) 2111–2121 [CrossRef] [Google Scholar]
  22. M. Zhao, X. Ji, B. Li, S.Y. Liang, Investigation on the influence of material crystallographic orientation on grinding force in the micro-grinding of single-crystal copper with single grit, Int. J. Adv. Manuf. Technol. 90 (2016) 3347–3355 [CrossRef] [Google Scholar]
  23. Z.S. Ding, Research on surface integrity and process optimal criterion of micro-grinding, Donghua University, Shanghai, China, 2016 [Google Scholar]
  24. A. Lefebvre, P. Vieville, P. Lipinski, C. Lescalier, Numerical analysis of grinding temperature measurement by the foil/workpiece thermocouple method, Int. J. Mach. Tool. Manuf. 46 (2006) 1716–1726 [CrossRef] [Google Scholar]
  25. C.f.w. CO., Constantan tc type t std, 2018. http://www.calfinewire.com/datasheets/100859-constantantctypeestd.html. [Google Scholar]
  26. L. Wang, H. Yu, Y.-S. Lee, M.-S. Kim, H.-W. Kim, Effect of microstructure on hot tensile deformation behavior of 7075 alloy sheet fabricated by twin roll casting, Mater. Sci. Eng. A 652 (2016) 221–230 [CrossRef] [Google Scholar]
  27. W. Tayon, R. Crooks, M. Domack, J. Wagner, A.A. Elmustafa, EBSD study of delamination fracture in Al–Li alloy 2090, Exp. Mech. 50 (2008) 135–143 [CrossRef] [Google Scholar]
  28. P.L.B. Oxley, The mechanics of machining: an analytical approach to assessing machinability, Halsted Press, New York, UK, 1989 [Google Scholar]
  29. M. Zhao, X. Ji, S.Y. Liang, Influence of aa7075 crystallographic orientation on micro-grinding force, Proceedings of the Institution of Mechanical Engineers, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. (2018). DOI: 10.1177/0954405418803706 [Google Scholar]
  30. S. Malkin, N.H. Cook, The wear of grinding wheels: part 2 – fracture wear, J. Eng. Ind. 93 (1971) 1129 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.