Issue
Manufacturing Rev.
Volume 7, 2020
Special Issue - The emerging materials and processing technologies
Article Number 22
Number of page(s) 12
DOI https://doi.org/10.1051/mfreview/2020019
Published online 07 July 2020
  1. International Energy Association, IEA, Coal 2018: Analysis and Forecasts to 2023, Marker Report Series, 2018, ISBN 978-92-64-30680-6. [Google Scholar]
  2. Eurostat,Coal production and consumption statistics, 2019, www.ec.europa.eu [Google Scholar]
  3. Eur-lex, Document 52011IE1597, Opinion of the European Economic and Social Committee on ‘The processing and exploitation, for economic and environmental purposes, of industrial and mining waste deposits in the European Union’ (own-initiative opinion), Official Journal of the European Union, (2012/C 24/03) 2012 [Google Scholar]
  4. J. Toleffson, Innovative zero-emissions power plants begins battery of tests, Nature 557 (2018) 622–623 [CrossRef] [Google Scholar]
  5. T. Pitso, Clean coal technology adaptability and R and D support for efficiency and sustainability, in: Green Technologies to Improve the Environment on Earth, edited by M. Pachesco (IntechOpen, 2019), doi: 10.5772/intechopen.81605 [Google Scholar]
  6. European Coal Combustion Products Association, ECOBA, Production and Utilisation of CCPs in 2016 in Europe [Google Scholar]
  7. S.V. Vassilev, R. Menendez, Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 4. Characterization of heavy concentrates and improved fly ash residues, Fuel 84 (2005) 973–991 [CrossRef] [Google Scholar]
  8. R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel (2012) 1–23 [CrossRef] [Google Scholar]
  9. ASTM C618–19 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete [Google Scholar]
  10. X. Querol, N. Moreno, J.C. Umaña, A. Alastuey, E. Hernández, A. López-Soler, F. Plana, Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal Geol. 50 (2002) 413–423 [CrossRef] [Google Scholar]
  11. J.P. Brassel, T.V. Ojumu, L.F. Petrik, Upscaling of zeolite synthesis from coal fly ash waste: current status and future outlook, in: Zeolites − useful minerals, edited by C. Belviso (IntechOpen, 2016), doi:10.5772/63792 [Google Scholar]
  12. R.L. Bedard, Synthesis of zeolites and manufacture of zeolitic catalysts and adsorbents, in Zeolites in Industrial Separation and Catalysis, edited by S. Kulprathipanja (J. Whiley & Sons, Inc., 2010), doi:10.1002/9783527629565 [Google Scholar]
  13. E. Kianfar, Nanozeolites: synthesized, properties, applications, J. Sol-Gel Sci. Technol. 91 (2019) 415–429 [CrossRef] [Google Scholar]
  14. J. Caro, Zeolites and mesoporous materials as advanced functional material, Stud. Surface Sci. Catal. 54 (2004) 80–93 [Google Scholar]
  15. Eur-lex, European Commission, Document 52017DC0490, Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions on the 2017 list of Critical Raw Materials for the EU, COM/2017/0490, 2017 [Google Scholar]
  16. P. Ferro, F. Bonollo, Materials selection in a critical raw materials perspective, Mater. Des. 177 (2019) 107848 [CrossRef] [Google Scholar]
  17. D. Friedman, T. Masciangioli, S. Olson, Replacing Critical Materials with Abundant Materials, in: The role of chemical sciences in finding alternatives to critical resources (The National Academic Press, Washington D.C., 2012), pp. 21–28, ISBN: 978-0-309-25429-8 [Google Scholar]
  18. M. Buchert, S. Degreif, W. Bulach, D. Schüler, S. Prakash, M. Möller, A. Köhler, S. Behrendt, R. Nolte, A. Röben, Substitution as a strategy for reducing the criticality of raw materials for environmental technologies, in Resource Conservation, Material Cycles, Minerals and Metal Industry, edited by F. Müller (German Environment Agency, Umweltbundesamt Publ., 2019), pp. 1–25, ISSN 1862-4804 [Google Scholar]
  19. D. Zgureva, S. Boycheva, Synthesis of highly porous micro- and nanocrystalline zeolites from aluminosilicate by-products, in Nanoscience Advanced in CBRN Agents Detection, Information and Energy, Springer Security Science for Peace and Security Series − A: Chemistry and Biology, edited by P. Petkov, D. Tsiulyanu, W. Kulisch, C. Popov (2015) pp. 199–204 [Google Scholar]
  20. S. Boycheva, I. Marinov, S. Miteva, D. Zgureva, Conversion of coal fly ash into nanozeolite Na-X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation, Sustain. Chem. Pharm. 15 (2020) 100217 [CrossRef] [Google Scholar]
  21. N. Murayama, H. Yamamoto, J. Shibat, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int. J. Miner. Process. 64 (2002) 1–17 [CrossRef] [Google Scholar]
  22. S. Boycheva, D. Zgureva, M. Václavíková, Y. Kalvachev, H. Lazarova, M. Popova, Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation, J. Hazard. Mater. 361 (2019) 374–382 [CrossRef] [Google Scholar]
  23. L. Bonaccorsi, E. Proverbio, Synthesis of thick zeolite 4A coatings on stainless steel, Micropor. Mesopor. Mater. 74 (2004) 221–229 [CrossRef] [Google Scholar]
  24. L. Li, B. Xue, J. Chen, N. Guan, F. Zhang, D. Liu, H. Feng, Direct synthesis of zeolite coatings on cordierite supports by in situ hydrothermal method, Appl. Catal. A 292 (2005) 312–321 [CrossRef] [Google Scholar]
  25. S. Boycheva, D. Zgureva, V. Vassilev, Kinetic and thermodynamic studies on the thermal behavior of fly ash from lignite coals, Fuel 108 (2013) 639–646 [CrossRef] [Google Scholar]
  26. M. Popova, S. Boycheva, H. Lazarova, D. Zgureva, K. Lázárd, A. Szegedi, VOCs oxidation and CO2 adsorption on dual adsorption/catalytic system based of fly ash zeolites, Catal. Today https://doi.org/10.1016/j.cattod.2019.06.070 [Google Scholar]
  27. E. Falabella, F. Trigueiro, Z. Fatima, The role of rare earth elements in zeolites and cracking catalysts, Catal. Today 218–219 (2013) 115–122 [Google Scholar]
  28. H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol. 5 (2015) 2649–2669 [CrossRef] [Google Scholar]
  29. A. Rusu, E. Dumitriu, Destruction of volatile organic compound by catalytic oxidation, Environ. Eng. Manag. J. 2 (2003) 273–302 [CrossRef] [Google Scholar]
  30. S. Recknagel, M. Michaelis, Certification of the mass fraction of Pt, Pd and Rh in a used car catalysts reference material, Accred. Qual. Assur. 14 (2009) 277–280 [CrossRef] [Google Scholar]
  31. L. Calabrese, E. Proverbio, A brief overview on the anticorrosion performances of sol–gel zeolite coatings, Coatings 9 (2019) 409, doi:10.3390/coatings9060409 [CrossRef] [Google Scholar]
  32. R. Cai, Y. Yan, Corrosion-Resistant Zeolite Coatings, Corrosion 64 (2008) 271–278 [CrossRef] [Google Scholar]
  33. G. Zhang, L. Wu, A. Tang, X. Ding, B. Jiang, A. Atrens, F. Pan, Smart epoxy coating containing zeolites loaded with Ce on a plasma electrolytic oxidation coating on Mg alloy AZ31 for active corrosion protection, Prog. Org. Coat. 132 (2019) 144–147 [CrossRef] [Google Scholar]
  34. L. Calabrese, L. Bonaccorsi, D.D. Pietro, E.E. Proverbio, Effect of process parameters on behaviour of zeolite coatings obtained by hydrothermal direct synthesis on aluminium support, Ceram. Int. 40 (2014) 12837–12845 [CrossRef] [Google Scholar]
  35. D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sust. Energ. Rev. 39 (2014) 426–443 [CrossRef] [Google Scholar]
  36. T. Lockwood, Developments in oxyfuel combustion of coal, IEA Clean Coal Centre, 2014, ISBN: 978-92-9029-561-7 [Google Scholar]
  37. G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652–1654 [CrossRef] [PubMed] [Google Scholar]
  38. A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Post-combustion CO2 capture using solid sorbents: a review, Ind. Eng. Chem. Res. 51 (2012) 1438–1463 [CrossRef] [Google Scholar]
  39. Yu. Kalvachev, D. Zgureva, S. Boycheva, B. Barbov, N. Petrova, Synthesis of carbon dioxide adsorbents by zeolitization of fly ash, J. Therm. Anal. Calorim. 122 (2015) 101–106 [Google Scholar]
  40. K.C. Chanapattharapol, S. Krachuamram, S. Youngme, Study of CO2 adsorption on iron oxide doped MCM-41, Micropor. Mesopor. Mat. 245 (2017) 8–15 [CrossRef] [Google Scholar]
  41. J.A. Rodriguez, A quantum chemical study of the adsorption of carbon dioxide and hydroxyl on copper and zinc oxide surfaces and hydroxyl on platinum surfaces, Langmuir 4 (1988) 1006–1020 [CrossRef] [Google Scholar]
  42. D. Zgureva, S. Boycheva, Experimental and model investigations of CO2 adsorption onto fly ash zeolite surface in dynamic conditions, Sustain. Chem. Pharm. 15 (2020) 100222 [CrossRef] [Google Scholar]
  43. R.L. Moss, E. Tzimas, H. Kara, P. Willis, J .Kooroshy, Critical Metals in Strategic Energy Technologies. Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies, JRC Scientific and Technical Reports, EUR 2011, 24884 EN, doi: 10.2790/35600 [Google Scholar]
  44. D. Zgureva, S. Boycheva, D. Behunová, M. Václavíková, Coal fly ash zeolites as adsorbents for effective removal of heavy metals and dyes from contaminated waters, in 16th International Conference on Environmental Science and Technology, CEST 2019, 4-7 Septermber 2019, Rhodes, Greece [Google Scholar]
  45. F. Mushtaq, M. Zahid, I.A. Bhatti, S. Nasir, T. Hussain, Possible applications of coal fly ash in wastewater treatment, J. Environ. Manag. 240 (2019) 27–46 [CrossRef] [Google Scholar]
  46. S. Boycheva, S. Miteva, I. Trendafilova, D. Zgureva, M. Václavíková, M. Popova, Magnetite nanoparticles activated coal fly ash zeolites with application in waste water remediation, in 16th International Conference on Environmental Science and Technology, CEST 2019, 4–7 Septermber 2019, Rhodes, Greece [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.