Open Access
Review
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 23
Number of page(s) 13
DOI https://doi.org/10.1051/mfreview/2020020
Published online 29 July 2020
  1. J.-P. Kruth, G. Levy, R. Schindel, T. Craeghs, E. Yasa, Consolidation of polymer powders by selective laser sintering, in Proceedings of the 3rd International Conference on Polymers and Moulds Innovations (2008) 15–30 [Google Scholar]
  2. P.D. Hilton, P.F. Jacobs, Rapid tooling: technologies and industrial applications, New York, 2000 [CrossRef] [Google Scholar]
  3. D. Gu, G. Zhang, Selective laser melting of novel nanocomposites parts with enhanced tribological performance: nanocrystalline TiC/Ti nanocomposites parts were built via SLM technology and the densification, microstructures, microhardness and tribological performance were, Virtual Phys. Prototyp. 8 (2013) 11–18 [CrossRef] [Google Scholar]
  4. I. Gibson, D. Shi, Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyp. J. 3 (1997) 129–136 [CrossRef] [Google Scholar]
  5. F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, P. Fino, Influence of process parameters on surface roughness of aluminum parts produced by DMLS, Int. J. Adv. Manufactur. Technol. 67 (2013) 2743–2751 [CrossRef] [Google Scholar]
  6. N. Hopkinson, P. Erasenthiran, High speed sintering-early research into a new rapid manufacturing process, In Solid Freeform Fabrication Symposium (2004) 312–320 [Google Scholar]
  7. B. Khoshnevis, B. Asiabanpour, M. Mojdeh, K. Palmer, SIS − a new SFF method based on powder sintering, Rapid Prototyp. J. 9 (2003) 30–36 [CrossRef] [Google Scholar]
  8. H. Wu et al., Recent developments in polymers/polymer nano composites for additive manufacturing, Progr. Mater. Sci. (2020) 100638 [CrossRef] [Google Scholar]
  9. S. Berretta, O. Ghita, K.E. Evans, Morphology of polymeric powders in Laser Sintering (LS): from polyamide to new PEEK powders, Eur. Polym. J. 59 (2014) 218–229 [CrossRef] [Google Scholar]
  10. K. Palmer, B. Khoshnevis, Performance factors in the selective inhibition of sintering process, in IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE) (2003) 1. [Google Scholar]
  11. D. Rajamani, B. Esakki, Examining mechanical strength characteristics of selective inhibition sintered HDPE specimens using RSM and desirability approach, in IOP Conference Series: Materials Science and Engineering 234 (2017) 12002 [CrossRef] [Google Scholar]
  12. B. Esakki, D. Rajamani, P. Arunkumar, An intelligent modeling system to predict mechanical strength characteristics of selective inhibition sintered parts using fuzzy logic approach, Mater. Today: Proc. 5 (2018) 11727–11737 [CrossRef] [Google Scholar]
  13. S.M. Baligidad, U. Chandrasekhar, K. Elangovan, S. Shankar, Investigation of parameters influencing mechanical properties in SIS by using RSM, Int. J. Mater. Product Technol. 58 (2019) 178–200 [CrossRef] [Google Scholar]
  14. C.R. Gagg, P.R. Lewis, In-service fatigue failure of engineered products and structures − case study review, Eng. Fail. Anal. 16 (2009) 1775–1793 [CrossRef] [Google Scholar]
  15. A. Bhaduri, Mechanical Properties and Working of Metals and Alloys (Springer, Singapore, 2018) [CrossRef] [Google Scholar]
  16. J. Happian-Smith, An introduction to modern vehicle design (Elsevier, 2001) [Google Scholar]
  17. M. Schmid, K. Wegener, Additive manufacturing: polymers applicable for laser sintering (LS), Proc. Eng. 149 (2016) 457–464 [CrossRef] [Google Scholar]
  18. R.D. Goodridge, C.J. Tuck, R.J.M. Hague, Laser sintering of polyamides and other polymers, Progr. Mater. Sci. 57 (2012) 229–267 [CrossRef] [Google Scholar]
  19. S. Dadbakhsh, L. Verbelen, O. Verkinderen, D. Strobbe, P. Van Puyvelde, J.-P. Kruth, Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts, Eur. Polym. J. 92 (2017) 250–262 [CrossRef] [Google Scholar]
  20. D. Rouholamin, N. Hopkinson, An investigation on the suitability of micro-computed tomography as a non-destructive technique to assess the morphology of laser sintered nylon 12 parts, Proc Inst. Mech. Eng. B 228 (2014) 1529–1542 [CrossRef] [Google Scholar]
  21. M. Schmidt, D. Pohle, T. Rechtenwald, Selective laser sintering of PEEK, CIRP Ann. 56 (2007) 205–208 [CrossRef] [Google Scholar]
  22. M. Pavan, T. Craeghs, P. Van Puyvelde, J. Kruth, W. Dewulf, Understanding the link between process parameters, microstructure and mechanical properties of laser sintered PA12 parts through X-ray computed tomography, 2016. [Google Scholar]
  23. W. Zhu et al., A novel method based on selective laser sintering for preparing high-performance carbon fibers/polyamide12/epoxy ternary composites, Sci. Reports 6 (2016) 33780 [Google Scholar]
  24. M. Vasquez, B. Haworth, N. Hopkinson, Optimum sintering region for laser sintered nylon-12, Proc. Inst. Mech. Eng. B 225 (2011) 2240–2248 [CrossRef] [Google Scholar]
  25. L. Verbelen, S. Dadbakhsh, M. Van den Eynde, J.-P. Kruth, B. Goderis, P. Van Puyvelde, Characterization of polyamide powders for determination of laser sintering processability, Eur. Polym. J. (2016) 163–174 [CrossRef] [Google Scholar]
  26. B. Van Hooreweder, F. De Coninck, D. Moens, R. Boonen, P. Sas, Microstructural characterization of SLS-PA12 specimens under dynamic tension/compression excitation, Polym. Testing 29 (2010) 319–326 [CrossRef] [Google Scholar]
  27. B. Van Hooreweder, D. Moens, R. Boonen, J.-P. Kruth, P. Sas, On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering, Polym. Testing 32 (2013) 972–981 [CrossRef] [Google Scholar]
  28. B. Van Hooreweder, J.-P. Kruth, High cycle fatigue properties of selective laser sintered parts in polyamide 12, CIRP Ann. 63 (2014) 241–244 [CrossRef] [Google Scholar]
  29. J. Munguia, K. Dalgarno, Fatigue behaviour of laser sintered Nylon 12 in rotating and reversed bending tests, Mater. Sci. Technol. 31 (2015) 904–911 [CrossRef] [Google Scholar]
  30. U.S.P.C. Vi and U.S.P.C. Vi, DuraForm® PA Plastic DuraForm® PA Plastic. [Google Scholar]
  31. Dtm, S.L.S. process and DTM's DuraForm PA, Material Data Sheet. [Google Scholar]
  32. B. Esakkia, D. Rajamania, P. Arunkumara, An intelligent modeling system to predict mechanical strength characteristics of selective inhibition sintered parts using fuzzy logic approach, Mater. Today 5 (2018) 11727–11737 [Google Scholar]
  33. ASTM D7771–Standard Test Method for Uniaxial Fatigue Properties of Plastics, ASTM International, 2012 [Google Scholar]
  34. F.K.M. Guideline, Analytical strength assessment of components in mechanical engineering, vol. 5, Norma, Frankfurt/Main: Forschungskuratorium Maschinenbau (FKM), 2003 [Google Scholar]
  35. P. Wright, X. Fu, I. Sinclair, S.M. Spearing, Ultra high resolution computed tomography of damage in notched carbon fiber—epoxy composites, J. Compos. Mater. 42 (2008) 1993–2002 [CrossRef] [Google Scholar]
  36. D. Baş, I.H. Boyacı, Modeling and optimization I: Usability of response surface methodology, J. Food Eng. 78 (2007) 836–845 [CrossRef] [Google Scholar]
  37. D.B. McDonald, W.J. Grantham, W.L. Tabor, M.J. Murphy, Global and local optimization using radial basis function response surface models, Appl. Math. Model. 31 (2007) 2095–2110 [CrossRef] [Google Scholar]
  38. G.E.P. Box, D.W. Behnken, Some new three level designs for the study of quantitative variables, Technometrics 2 (1960) 455–475 [CrossRef] [Google Scholar]
  39. H. Öktem, T. Erzurumlu, H. Kurtaran, Application of response surface methodology in the optimization of cutting conditions for surface roughness, J. Mater. Proc. Technol. 170 (2005) 11–16 [CrossRef] [Google Scholar]
  40. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons (2016) [Google Scholar]
  41. M.M.D. Zulkali, A.L. Ahmad, N.H. Norulakmal, Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution, Bioresource Technol. 97 (2006) 21–25 [CrossRef] [Google Scholar]
  42. D. Pokhrel, T. Viraraghavan, Arsenic removal from aqueous solution by iron oxide-coated fungal biomass: a factorial design analysis, Water, Air, Soil Pollution 173 (2006) 195 [CrossRef] [Google Scholar]
  43. J. Antony, Design of experiments for engineers and scientists, Elsevier (2014) [Google Scholar]
  44. S.F.S. Shirazi et al., A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Sci. Technol. Adv. Mater. 16 (2015) 033502 [CrossRef] [PubMed] [Google Scholar]
  45. T.D. Fender, Thermal spray high performance polymer coatings, Mater. Technol. 11 (1996) 16–20 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.