Open Access
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 24
Number of page(s) 15
DOI https://doi.org/10.1051/mfreview/2020023
Published online 17 August 2020
  1. T. Klassen, H. Assadi, H. Kreye, F. Gartner, Cold spraying − a materials perspective. Acta Mater. 116 (2016) 382–407 [CrossRef] [Google Scholar]
  2. A. Alkhimov, A. Papyrin, V. Kosarev, Gas-dynamic spraying method for applying a coating. US Patent Application 5, 302, 414. 1994; No. 13 [Google Scholar]
  3. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, M. Dao. Cold spray coating: review of material systems and future perspectives. Surf. Eng. 30 (2014) 369–395 [CrossRef] [Google Scholar]
  4. R.N. Raoelison, C. Verdy, H. Liao, Cold gas dynamic spray additive manufacturing today: deposit possibilities, technological solutions and viable applications. Mater. Des. 133 (2017) 266–287 [CrossRef] [Google Scholar]
  5. R.N. Raoelison, Y. Xie, T. Sapanathan, M.P. Planche, R. Kromer, S. Costil, C. Langlade. Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date. Addit. Manuf. 19 (2018) 134–59 [Google Scholar]
  6. S.T. Oyinbo, T.-C. Jen, A comparative review on cold gas dynamic spraying processes and technologies. Manuf. Rev. 6 (2019) 11–13 [Google Scholar]
  7. S.R. Vadla, Simulation of gas dynamic cold spray process. Electronic Theses and Dissertations. (2018) 2680 [Google Scholar]
  8. J. Vlcek, L. Gimeno, H. Huber, E. Lugscheider, A systematic approach to material eligibility for the cold-spray process. J. Therm. Spray Technol. 14 (2005) 125–133 [CrossRef] [Google Scholar]
  9. K. Kim, M. Watanabe, S. Kuroda, Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity. Surf. Coat. Technol. 204 (2010) 2175–2180 [CrossRef] [Google Scholar]
  10. S.T. Oyinbo, T.C. Jen, Investigation of the process parameters and restitution coefficient of ductile materials during cold gas dynamic spray (CGDS) using finite element analysis. Addit. Manuf. 31 (2020) 100986 [Google Scholar]
  11. M. Karimi, A. Fartaj, G. Rankin, D. Vanderzwet, W. Birtch, J. Villafuerte. Numerical simulation of the cold gas dynamic spray process. Proc. Int. Therm. Spray Conf. 15 (2006) 518–523 [Google Scholar]
  12. H. Assadi, F. Gartner, T. Stoltenhoff, H. Kreye. Bonding mechanism in cold gas spraying. Acta Mater. 6454 (2003) 4379–4394 [CrossRef] [Google Scholar]
  13. S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li, C. Coddet. Deposition behavior of thermally softened copper particles in cold spraying. Acta Mater. 61 (2013) 5105–5118 [CrossRef] [Google Scholar]
  14. W.Y. Li, H. Liao, C.J. Li, G. Li, C. Coddet, X. Wang, On high velocity impact of micro-sized metallic particles in cold spraying. Appl. Surf. Sci. 253 (2006) 2852–2862 [CrossRef] [Google Scholar]
  15. M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch, Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater. Des. 25 (2004) 681–688 [CrossRef] [Google Scholar]
  16. J. Xie, D. Nélias, Y. Ichikawa, H. Walter-Le Berre, K. Ogawa, Simulation of the cold spray particle deposition process. J. Tribol. 137 (2015) 041101 [CrossRef] [Google Scholar]
  17. M.K. Hamiyanze, J. Tien-Chen, Numerical analysis of the cold gas dynamic spray surface coating process numerical analysis of the cold gas dynamic spray surface coating process. 102 (2017) 1–6 [Google Scholar]
  18. F.F. Wang, W.Y. Li, M. Yu, H.L. Liao, Prediction of critical velocity during cold spraying based on a coupled thermomechanical Eulerian model. J. Therm. Spray Technol. 23 (2014) 60–67 [CrossRef] [Google Scholar]
  19. M. Yu, W.Y. Li, F.F. Wang, X.K. Suo, H.L. Liao, Effect of particle and substrate preheating on particle deformation behavior in cold spraying. Surf. Coatings Technol. 220 (2013) 174–178 [CrossRef] [Google Scholar]
  20. M. Yu, W.Y. Li, F.F. Wang, H.L. Liao, Finite element simulation of impacting behavior of particles in cold spraying by Eulerian approach. J. Therm. Spray Technol. 21 (2012) 745–752 [CrossRef] [Google Scholar]
  21. B. Yildirim, S. Muftu, A. Gouldstone, Modeling of high velocity impact of spherical particles. Wear 270 (2011) 703–713 [CrossRef] [Google Scholar]
  22. W. Li, C. Zhang, C. Li, H. Liao, Modeling aspects of high velocity impact of particles in cold spraying by explicit finite element analysis. J. Therm. Spray Technol. 18 (2009) 921–933 [CrossRef] [Google Scholar]
  23. A. Manap, O. Nooririnah, H. Misran, T. Okabe, K. Ogawa, Experimental and SPH study of cold spray impact between similar and dissimilar metals. Surf. Eng. 30 (2014) 335–341 [CrossRef] [Google Scholar]
  24. S. Yin, X.F. Wang, B.P. Xu, W.Y. Li, Examination on the calculation method for modeling the multi-particle impact process in cold spraying. J. Therm. Spray Technol. 19 (2010) 1032–1041 [CrossRef] [Google Scholar]
  25. I. Smojver, D. Ivančevic, Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach, Compos. Sci. Technol. 71 (2011) 489–498 [CrossRef] [Google Scholar]
  26. Q. Gang, S. Henke, J. Grabe, Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech. 38 (2011) 30–39 [CrossRef] [Google Scholar]
  27. Abaqus Analysis User's Manual. ABAQUS 6.14 HTML Documentation, Dassault Systemes. 2014 [Google Scholar]
  28. M. Bassim, A. Odeshi, Shear strain localisation and fracture in high strength structural materials. Arch. Mater. Sci. Eng. 31 (2008) 69–74 [Google Scholar]
  29. W.Y. Li, W. Gao, Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Appl. Surf. Sci. 255 (2009) 7878–7892 [CrossRef] [Google Scholar]
  30. W.-Y. Li, C. Zhang, C.-J. Li, H. Liao, Modeling aspects of high velocity impact of particles in cold spraying by explicit finite element analysis. J. Therm. Spray Technol. 18 (2009) 921–933 [CrossRef] [Google Scholar]
  31. G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, General aspects of interface bonding in kinetic sprayed coatings. Acta Mater. 56 (2008) 4858–4868 [CrossRef] [Google Scholar]
  32. A. Manap, T. Okabe, K. Ogawa, Computer simulation of cold sprayed deposition using smoothed particle hydrodynamics. Procedia Eng. 10 (2011) 1145–1150 [CrossRef] [Google Scholar]
  33. D.J. Benson, S. Okazawa, Contact in a multi-material Eulerian finite element formulation. Comput. Methods Appl. Mech. Engrg. 193 (2004) 4277–4298 [CrossRef] [Google Scholar]
  34. W.Y. Li, S. Yin, X.F. Wang, Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. Appl. Surf. Sci. 256 (2010) 3725–3734 [CrossRef] [Google Scholar]
  35. H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Bonding mechanism in cold gas spraying. Acta Mater. 51 (2003) 4379–4394 [CrossRef] [Google Scholar]
  36. W. Li, S. Yin, X. Wang, Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. Appl. Surf. Sci. 256 (2010) 3725–3734 [CrossRef] [Google Scholar]
  37. S Yin, X.-F. Wang, W.Y. Li, H.-E. Jie, Effect of substrate hardness on the deformation behavior of subsequently incident particles in cold spraying. Appl. Surf. Sci. 257 (2011) 7560–7565 [CrossRef] [Google Scholar]
  38. S.T. Oyinbo, T.-C. Jen, Molecular dynamics investigation of temperature effect and surface configurations on multiple impacts plastic deformation in a palladium-copper composite metal membrane (CMM): A cold gas dynamic spray (CGDS) process, Comput. Mater. Sci. 185 (2020) 109968. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.