Open Access
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 25
Number of page(s) 15
DOI https://doi.org/10.1051/mfreview/2020022
Published online 18 August 2020
  1. C. Yeni, O. Ugur, S. Sami, Effect of in penetration depth on the mechanical properties of friction stir spot welded aluminium and copper. Mater. Test. J. Technol. 54 (2012) 233–239 [CrossRef] [Google Scholar]
  2. Y. Bozkurt, S. Salman, G. Cam, The effect of welding parameters on lap-shear tensile properties of dissimilarfriction stir spot welded AA5754-H22/2024-T3 joints. Sci. Technol. Weld. Joi. 18 (2013) 337–345 [CrossRef] [Google Scholar]
  3. H. Guler, Influence of the tool geometry and process parameters on the static strength and hardness of friction stir spot welded aluminium alloy Sheets. Mater. Technol. 49 (2014) 457–460 [Google Scholar]
  4. I.J. Ibrahim, G.G. Yapici, Applications of a novel friction stir spot welding process on dissimilar aluminium joints. J. Manuf. Proc. 35 (2017) 282–288 [CrossRef] [Google Scholar]
  5. M.A. Tashkandi, J.A. Al-Jarrah, M. Ibrahim, Spot welding of 6061 aluminium alloy by friction stir spot welding process. Eng. Technol. Appl. Sci. Res 7 (2017) 1629–1632 [CrossRef] [Google Scholar]
  6. M. Paidar, A. Khodabandeh, M.L. Sarab, M. Taheri, Effect of welding parameters (plunge depths of shoulder, pin geometry and tool rotation speed) on the failure mode and stir zone characteristics of friction stir spot welded aluminium 2024-T3 sheets. J. Mech. Sci. Technol. 29 (2014) 4639–4644 [CrossRef] [Google Scholar]
  7. O. Abedeni, E. Ranjbarnodeh, P. Marashi, Effect of tool geometry and welding parameters on the microstructure and static strength of the friction stir spot welded DP780 dual phase steel sheets. Mater. Technol. 51 (2017) 687–694 [Google Scholar]
  8. M. Awang, V.H. Mucino, Z. Feng, S.A. David, Thermos-mechanical modelling of friction stir spot welding (FSSW) process: use of an explicit adaptive meshing scheme. SAE Technical Paper. 2005; 2005-2001-1251 [Google Scholar]
  9. W. Yuang, Friction Stir Spot Welding of Aluminium Alloys (Missouri University of Science and Technology, 2008) [Google Scholar]
  10. S. Siddharth, T. Senthikumar, A study of friction stir spot welding process and its parameters for increasing strength of dissimilar joint. Univ. Zulia 39 (2016) 168–176 [Google Scholar]
  11. O.M. Ikumapayi, E.T. Akinlabi, Recent advances in keyhole defect repairs via refilling friction stir spot welding. Mater. Today Proc. 18 (2019) 2201–2208 [CrossRef] [Google Scholar]
  12. M.K. Kulekci, Effect of process parameters on tensile shear strength of friction stir spot welded Aluminium Alloy (EN AW 5005). Arch. Metall. Mater. 59 (2014) 221–224 [CrossRef] [Google Scholar]
  13. H. Liu, Y. Zhao, X. Su, L. Yu, J. Hou, Microstructural characteristics and mechanical properties of friction stir spot welded 2A12-T4 aluminium alloy. Adv. Mater. Sci. Eng. 2013 (2013) 1–10 [Google Scholar]
  14. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. 5 (2005) 1–78 [CrossRef] [Google Scholar]
  15. S.N. Bodake, A.J. Gujar, Review paper on optimization of friction stir welding process parameters. Int. J. Eng. Res. Technol 10 (2017) 611–620 [Google Scholar]
  16. R. Kumar, V. Singh, Influence of process parameters on mechanical properties of aluminium alloy AA6063 during friction stir welding. Int. J. Eng. Sci. Res. Technol. (IJESRT) 6 (2016) 150–158 [Google Scholar]
  17. M.N. Hamzah, S.H. Bakhy, M.A. Fliayyh, Effect of pin shape and rotational speed on the mechanical behaviour and microstructures of friction stir spot welding of AA6061 aluminium alloy. Al-Nahrain J. Eng. Sci. (NJES) 20 (2017) 129–139 [Google Scholar]
  18. G. Buffa, L. Fratini, M. Piacentini, Tool path design in friction stir spot welding of AA6068-T6 aluminium alloys. Key Eng. Mater. 344 (2007) 767–774 [CrossRef] [Google Scholar]
  19. L. Fratini, A. Barcellona, G. Buffa, D. Palmeri, Friction stir spot welding of AA6082-T6: influence of the most relevant process parameters and comparison with classic mechanical fastening techniques. Proc. IMechE B J. Eng. Manuf. 221 (2007) 1111–1118 [CrossRef] [Google Scholar]
  20. K. Chen, X. Liu, J. Ni, Effects of process parameters on friction stir spot welding of aluminium alloys to advanced high strength steel. J. Manuf. Sci. Eng. 139 (2017) 081016 [CrossRef] [Google Scholar]
  21. C. Jonckheere, B. de Meester, C. Cassiers, M. Delhaye, A. Simar, Fracture and mechanical properties of friction stir spot welds in 6063-T6 aluminum alloy. Int. J. Adv. Manuf. Technol. 62 (2012) 569–575 [CrossRef] [Google Scholar]
  22. K. Chen, X. Liu, J. Ni, Keyhole refilled friction stir spot welding of aluminium alloy to advanced high strength steel. In ASME 2016 International Manufacturing Science and Engineering Conference, 1–11 [Google Scholar]
  23. E. Fereiduni, M. Movahedi, A.H. Kokabi, H. Najfi, Effect of dwell time on joint interface microstructure and strength of dissimilar friction stir spot- welded Al-5083 and St-12 alloy sheets. Metall and Mat. Trans. A 48 (2017) 1744–1758 [Google Scholar]
  24. S. Ravikumar, V.S. Rao, R.V. Pranesh, Effect of process parameters on mechanical properties of friction stir welded dissimilar materials between AA6061-T651 and AA7075-T651 alloys. Int. J. Adv. Mech. Eng. 4 (2014) 101–114 [Google Scholar]
  25. M.K. Abbass, S.K. Hussein, A.A. Khudhair, Optimization of mechanical properties of friction stir spot welded joints of dissimilar aluminium alloys (AA2024-T3 and AA5754-H114). Res. Article Mech. Metall. 1 (2016) 1–10 [Google Scholar]
  26. Z. Li, Z. Xu, L. Zhang, Z. Yan, Friction spot welding of dissimilar 6063/5083 aluminium alloys. Mater. Sci. Technol. 33 (2017) 1626–1634 [CrossRef] [Google Scholar]
  27. ASTM International Standards, Standard practice for micro etching metals and alloys. designation: E407-07, 2015, 9 [Google Scholar]
  28. T. Vuherer, P. Maruschak, I. Samardžić, Behaviour of coarse grain in Heat Affected Zone (HAZ) during cycle loading. Metalurgija 51 (2012) 301–304 [Google Scholar]
  29. O. Abedeni, E. Ranjbarnodeh, P. Marashi, Effect of tool geometry and welding parameters on the microstructure and static strength of the friction stir spot welded DP780 dual phase steel sheets. Mater. Technol. 51 (2017) 687–694 [Google Scholar]
  30. O.M. Ikumapayi, E.T. Akinlabi, J.D. Majumdar, S.A. Akinlabi, Influence of 17-4PH stainless steel and α+ β titanium alloy powders for corrosion susceptibility on friction stir processed AA7075-T651 aluminium matrix composites. J. Bio Tribo Corr. 5 (2019) 1–11 [CrossRef] [Google Scholar]
  31. S. Siddharth, T. Senthikumar, A Study of Tool Penetration Behaviour in Dissimilar Al5083/C10100 Friction Stir Spot Welds (Elsevier Science Direct, 2017) [Google Scholar]
  32. C. Obayi, R. Tolouei, A. Mostavan, C. Paternoster, S. Turgeon, B.A. Okorie, D. Obikwelu, D. Mantovani, Effect of grain size on mechanical properties and biodegradation behaviour of pure iron for cardiovascular stent application. Bio-Matter. 6 (2016) 1–14 [Google Scholar]
  33. S. Jambhale, S. Kumar, S. Kumar, Effect of process parameters and too geometries on properties of friction stir spot review. Univ. J. Eng. Sci. 3 (2015) 7–11 [Google Scholar]
  34. ASM Aerospace Specification Metals Inc., 1978. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6063T4 (accessed 21 August, 2018) [Google Scholar]
  35. C.U. Atuanya, A.O.A. Ibhadode, I.M. Dagwa, Effects of breadfruit seed hull ash on the microstructures and properties of Al-Si-Fe alloy/breadfruit seed hull ash particulate composites. Elsevier 2 (2012) 142–149 [Google Scholar]
  36. R. Kumar, V. Singh, Influence of process parameters on mechanical properties of aluminium alloy AA6063 during friction stir welding. Int. J. Eng. Sci. Res. Technol. (IJESRT) 6 (2016) 150–158 [Google Scholar]
  37. T. Bell, How to calculate the rate of metal corrosion, 2018. https://www.thebalance.com/corrosion-rate-calculator-2339697 (accessed 30 November, 2018) [Google Scholar]
  38. C.S. Obayi, R. Tolouei, A. Mostvan, C. Patemoster, S. Turgeon, T.B. Okorie, D. Mantovani, Effect of grain sizes on mechanical properties and biodegradation behaviour of pure iron for cardiovascular stent application. Bio Matter. 6 (2014) 1–9 [Google Scholar]
  39. O.M. Ikumapayi, E.T. Akinlabi, Efficacy of α-b grade titanium alloy powder (Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si) in surface modification and corrosion mitigation in 3.5% NaCl on friction stir processed armour grade 7075-T651 aluminium alloys − insight in defence applications. Mater. Res. Exp. 6 (2019) 1–15 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.