Open Access
Review
Issue
Manufacturing Rev.
Volume 7, 2020
Article Number 26
Number of page(s) 15
DOI https://doi.org/10.1051/mfreview/2020024
Published online 19 August 2020
  1. R. Rodriguez-Castro, Processing, Microstructure and Mechanics of Functionally Graded Al A359/SiCp Composite, Ph.D. Thesis, State University of New York at Buffalo, 2000, p. 195 [Google Scholar]
  2. A. Velhinho, P.D. Sequeira, F.M. Braz Fernandes et al., Al/SiCp Functionally graded metal-matrix composites produced by centrifugal casting: effect of particle grain size on reinforcement distribution, Mater. Sci. Forum 423–425 (2003) 257–262 [CrossRef] [Google Scholar]
  3. T.P.D. Rajan, DR.M. Pillai, B.C. Pai, Centrifugal casting of functionally graded aluminium matrix composite components, Int. J. Cast Metals Res. 21 (2008) 1–4 [CrossRef] [Google Scholar]
  4. T.P.D. Rajan, DR.M. Pillai, B.C. Pai, Centrifugal casting: a potential technique for making functionally graded materials and engineering components, Indian Foundry J. 53 (2007) 79–87 [Google Scholar]
  5. W. Kai, J. Tao, H. Zhili et al., Mechanical and thermal expansion properties of SiCp/ ZAlSi9Mg composites produced by centrifugal casting, J. Wuhan Univ. Technol. Mater. Sci. Ed. (2016) [Google Scholar]
  6. M.J. Li, Y.C. Wu, F.S. Yen et al., Influence of ionic mobility on the phase transformation route in Y3Al5O12 (YAG) stoichiometry, J. Eur. Ceram. Soc. 31 (2011) 2099–2106 [CrossRef] [Google Scholar]
  7. M. Poornesh, N. Harish, K. Aithal, Mechanical and tribological properties of centrifugally cast Al-Si-SiC composites, Am. J. Mater. Sci. 6 (2016) 31–35 [Google Scholar]
  8. O. Savas, R. Kayicki, F. Ficici, Production of functionally graded SiC/Al-Cu-Mg composite by centrifugal casting, Sci. Eng. Compos. Mater. 21 (2014) 1–5 [CrossRef] [Google Scholar]
  9. X.H. Qin, W.X. Han, C.G. Fan et al., Research on distribution of SiC particles in aluminum-alloy matrix functionally graded composite tube manufactured by centrifugal casting, J. Mater. Sci. Lett. 21 (2002) 665–667 [CrossRef] [Google Scholar]
  10. R. Rodriguez-Castro, M.H. Kelestemur. Processing and microstructural characterization of functionally gradient Al A359/SiCp composite, J. Mater. Sci. 37 (2002) 1813–1821 [CrossRef] [Google Scholar]
  11. R.S. Vikas, M.U. Maiya, E. Jayakumar et al., Processing and characterization of SiCp reinforced functionally graded AA 6061 aluminium metal matrix composites, Int. J. Adv. Mech. Aeronaut. Eng. 1 (2014) 61–65 [Google Scholar]
  12. E. Jayakumar, J.C. Jacob, T. Rajan et al., Processing and characterization of functionally graded aluminum (A319)-SiCp metallic composites by centrifugal casting technique, Metall. Mater. Trans. 47 (2016) 4306–4315 [CrossRef] [Google Scholar]
  13. A. Velhinho, J.D. Botas, E. Ariza et al., Tribocorrosion studies in centrifugally cast Al-matrix SiCp-reinforced functionally graded composites, Mater. Sci. Forum 455–456 (2004) 871–875 [CrossRef] [Google Scholar]
  14. K. Wang, J. Cheng, W. Sun et al., An approach for increase of reinforcement content in particle rich zone of centrifugally cast SiCP/Al composites, J. Compos. Mater. 46 (2011) 1021–1027 [CrossRef] [Google Scholar]
  15. X. Yong, L. Changming, Z. Yanbo et al., Centrifugal casting processes of manufacturing in situ functionally gradient composite materials of Al-19Si-5Mg alloy, Rare Metals 28 (2009) 405–411 [CrossRef] [Google Scholar]
  16. N. Radhika, R. Raghu, Development of functionally graded aluminium composites using centrifugal casting and influence of reinforcements on mechanical and wear properties, Trans. Nonferrous Met. Soc. China 26 (2016) 905−916 [CrossRef] [Google Scholar]
  17. M.F. Forster, R.W. Hamilton, R.J. Dashwood et al., Centrifugal casting of aluminium containing in situ formed TiB2, Mater. Sci. Technol. 19 (2003) 1215–1219 [CrossRef] [Google Scholar]
  18. S. Kumar, V. Subramaniya Sarma, B.S. Murty, Functionally graded Al alloy matrix in-situ composites, Metall. Mater. Trans. A 41 (2009) 242–254 [CrossRef] [Google Scholar]
  19. N. Radhika, R. Raghu, Three body abrasion wear behaviour of functionally graded aluminium/B4C metal matrix composite using design of experiments, Proc. Eng. 97 (2014) 713–722 [CrossRef] [Google Scholar]
  20. N.B. Duque, Z. Humberto Melgarejo, O. Marcelo Suarez, Functionally graded aluminum matrix composites produced by centrifugal casting, Mater. Character. 55 (2005) 167–171 [CrossRef] [Google Scholar]
  21. J.R. Davis, Corrosion of aluminum and aluminum alloys, ASM International, Materials Park, OH7, 1999, p. 180 [Google Scholar]
  22. J. Yupa, Corrosion behavior of Al–Cu–B composites in 3.5% NaCl solution, MS. Thesis, The University of Puerto Rico, Mayaguez, USA, 2004 [Google Scholar]
  23. F. Erdemir, A. Canakci, T. Varol, S. Ozkaya, Corrosion and wear behavior of functionally graded Al2024/SiC composites produced by hot pressing and consolidation, J. Alloy Compd. 644 (2015) 589–596 [CrossRef] [Google Scholar]
  24. F. Erdemir, A. Canakci, T. Varol, Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques, Trans. Nonferrous Metals Soc. China 25 (2015) 3569–3577 [CrossRef] [Google Scholar]
  25. Y. Luan, N. Song, Y. Bai et al., Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls, J. Mater. Process. Technol. 210 (2010) 536–541 [CrossRef] [Google Scholar]
  26. L. Niu, Y. Xu, X. Wang, Fabrication of WC/Fe composite coating by centrifugal casting plus in-situ synthesis techniques, Surf. Coat. Technol. 205 (2010) 551–556 [CrossRef] [Google Scholar]
  27. M. Kaan Pehlivanoğlu, M. Vedat Akdeniz, A. Şakir Bor, Structural characterization of iron-based bulk metallic glass alloys produced by centrifugal casting, Chem. Eng. Commun. 190 (2003) 925–935 [CrossRef] [Google Scholar]
  28. C.G. Kuo, C.G. Chao, A novel method of centrifugal processing for the synthesis of lead-bismuth eutectic alloy nanospheres and nanowires, Int. J. Adv. Manuf. Technol. 32 (2007) 468–472 [CrossRef] [Google Scholar]
  29. C.K. Kim, K.H. Kim, J.M. Park et al., Development of advanced research reactor fuels using centrifugal atomization technology, Metals Mater. 5 (1999) 149–156 [CrossRef] [Google Scholar]
  30. K.H. Kim, D.B. Lee, C.K. Kim et al., Characteristics of U3Si and U3Si2 powders prepared by centrifugal atomization, J. Nucl. Sci. Technol. 34 (1997) 1127–1132 [CrossRef] [Google Scholar]
  31. A.B. Shuck, The development of equipment and methods for centrifugally casting reactor fuel slugs, United States (1953). Web doi:10.2172/4374631 [CrossRef] [Google Scholar]
  32. O. Odawara, Ceramic linings of pipes using SHS technology, Key Eng. Mater. 122–124 (1996) 463–478 [CrossRef] [Google Scholar]
  33. W. Xi, S. Yin, S. Guo et al., Stainless steel lined composite steel pipe prepared by centrifugal-SHS process, J. Mater. Sci. 35 (2000) 45–48 [CrossRef] [Google Scholar]
  34. W. Huisman, T. Graule, L.J. Gauckler, Centrifugal slip casting of zirconia (TZP), J. Eur. Ceramic Soc. 13 (1994) 33–39 [CrossRef] [Google Scholar]
  35. S.R. Chang, J.M. Kim, C.P. Hong, Numerical simulation of microstructure evolution of Al alloys in centrifugal casting, ISIJ Int. 41 (2001) 738–747 [CrossRef] [Google Scholar]
  36. M.F. Zhu, C.P. Hong, A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys, ISIJ Int. 41 (2001) 436–445 [CrossRef] [Google Scholar]
  37. K.S. Keerthiprasad, M.S. Murali, P.G. Mukunda et al., Numerical Simulation and Cold Modeling experiments on centrifugal casting, Metal. Mater. Trans. B 42B (2011) 144–155 [CrossRef] [Google Scholar]
  38. Y. Waranabe, H. Eryu, K. Matsuura, Evaluation of three-dimensional orientation of Al3Ti platelet in Al-based functionally graded materials fabricated by a centrifugal casting technique, Acta Mater. 49 (2001) 775–783 [CrossRef] [Google Scholar]
  39. S. Sarkar, A.K. Lohar, S.C. Panigrahi, Vertical centrifugal casting of aluminum matrix particle reinforced composites, J. Reinforced Plast. Compos. 28 (2008) 1013–1020 [CrossRef] [Google Scholar]
  40. W. Shi-ping, L. Chang-yun, U. Jing-jie, S. Yan-qing, L. Xiu-qiao, U. Heng-zhi, Numerical simulation and experimental investigation of two filling methods in vertical centrifugal casting, Trans. Nonferrous Met. Soc. China 16 (2006) 1035–1040 [CrossRef] [Google Scholar]
  41. F. Li, D. Wang, Y. Jiang, L. Yang, Y. Zhao, X. Zhang, Effect of centrifugal casting process on mold filling and grain structure of K418B turbine guide, Int. J. Adv. Manuf. Technol. 104 (2019) 3065–3072 [CrossRef] [Google Scholar]
  42. M.P. Gopal, S.R. Sasihitlu, K.A. Subbanna et al., An understanding of fluid behaviour in centrifugal casting, AFI/TFI-2007, Commemoration of the 100th Anniversary of Tohoku University, December 14-15, 2007, Sendai, Miyagi, Japan. [Google Scholar]
  43. S.K. Wilson, R. Hunt, B.R. Duffy, On the critical solutions in coating and rimming flow on a uniformly rotating horizontal cylinder, J. Mech. Appl. Math. 55 (2002) 357–383 [CrossRef] [Google Scholar]
  44. J.M. Lopez, F. Marques, A.H. Hirsa et al., Symmetry breaking in free surface cylinder flows, J. Fluid Mech. 502 (2004) 99–126 [CrossRef] [Google Scholar]
  45. F. Marques, A.H. Hirsa, R. Miraghaie, Symmetry breaking in free-surface cylinder flows, J. Fluid. Mech. 502 (2004) 99–126 [CrossRef] [Google Scholar]
  46. R.A. Shailesh, P.G. Mukunda, S.R. Shrikantha, Experimental studies of flow patterns of different fluids in a partially filled rotating cylinder, J. Appl. Fluid. Mech. 2 (2009) 39–43 [Google Scholar]
  47. R.A. Shailesh, P.G. Mukunda, S.R. Shrikantha, AFI/ TFI-2007, Commemoration of the 100th Anniversary of Tohoku University, Sendai, Miyagi, Japan, 2007 [Google Scholar]
  48. P.G. Mukunda, S. Rao, S.S. Rao, Influence of rotational speed of centrifugal casting process on appearance, microstructure, and sliding wear behaviour of Al-2Si cast alloy, Met. Mater. Int. 16 (2010) 137–143 [CrossRef] [Google Scholar]
  49. P.G. Mukunda, S. Rao, S.S. Rao, Inference of optimal speed for sound centrifugal casting of Tin, Can. Metal. Quart. 48 (2009) 157–165 [CrossRef] [Google Scholar]
  50. R.A. Shailesh, M.S. Tattimani, S.S. Rao, Understanding melt flow behavior for Al-Si alloys processed through vertical centrifugal casting, Mater. Manufactur Process. 30 (2015) 1305–1311 [CrossRef] [Google Scholar]
  51. A.S. Rao, M.S. Tattimani, S.S. Rao, Effect of rotational speeds on the cast tube during vertical centrifugal casting process on appearance, microstructure, and hardness behavior for Al-2Si alloy, Metal. Mater. Trans. B 46B (2015) 793–799 [Google Scholar]
  52. J.W. Park, H.J. Kim, Melt filling behaviors and primary si particle distribution on horizontal centrifugal casting in b390 aluminum alloy, Int. J. Metal Casting 11 (2016) 802–811 [CrossRef] [Google Scholar]
  53. S.Y. Lee, S.M. Lee, C.P. Hong, Numerical modeling of deflected columnar dendritic grains solidified in a flowing melt and its experimental verification, ISIJ Int. 40 (2000) 48–57 [CrossRef] [Google Scholar]
  54. L.P. Wang, D.R. Liu, E.J. Guo, Modeling of ‘banding' microstructure formation in centrifugally solidified ti-6al-4v alloy, Acta Metall. Sin. 21 (2008) 399–408 [CrossRef] [Google Scholar]
  55. J.W. Yeh, S.H. Jong, The cast structure of a 7075 alloy produced by a water-cooling centrifugal casting method, Metal. Mater. Trans. A 25 (1994) 643–650 [CrossRef] [Google Scholar]
  56. C.G. Kang, P.K. Rohatgi, Transient thermal analysis of solidification in a centrifugal casting for composite materials containing particle segregation, Metall. Mater. Trans. B 27 (1996) 277–285 [CrossRef] [Google Scholar]
  57. Q.M. Liu, Y.N. Jiao, Y.S. Yang, Z.Q. Hu, Theoretical analysis of the particle gradient distribution in centrifugal field during solidification, Metall. Mater. Trans. B 27 (1996) 1025–1029 [CrossRef] [Google Scholar]
  58. R. Nadella, D.G. Eskin, Q. Du, L. Katgerman, Macrosegregation in direct-chill casting of aluminum alloys, Prog. Mater. Sci. 53 (2008) 421–480 [CrossRef] [Google Scholar]
  59. Q. Du, D.G. Eskin, L. Katgerman, Modelling macrosegregation during DC casting of multi-component aluminum alloys, Metall. Mater. Trans. A 38A (2007) 180–186 [CrossRef] [Google Scholar]
  60. D.G. Eskin, L. Katgerman, Macrosegregation mechanisms in direct-chill casting of aluminium alloys, Mater. Sci. Forum 630 (2009) 193–199 [CrossRef] [Google Scholar]
  61. Y. Watanabe, H. Sato, Review fabrication of functionally graded materials under a centrifugal force, Nanocompos. Unique Prop. Appl. Med. Ind. (2011). doi:10.5772/20988 [Google Scholar]
  62. Y. Fukui, K. Takashima, C.B. Ponton, Measurement of Young's modulus and internal friction of an in situ Al-Al3Ni functionally gradient material, J. Mater. Sci. 29 (1994) 2281–2288 [NASA ADS] [CrossRef] [Google Scholar]
  63. Y. Watanabe, N. Yamanaka, Y.Z. Fukui, Metallkd 88 (1997) 717–721 [Google Scholar]
  64. C.N. Wei, H.Y. Bor, C.Y. Ma, T.S. Lee, A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties, Mater. Chem. Phys. 80 (2003) 89–93 [CrossRef] [Google Scholar]
  65. P. Shailesh, S. Sundarrajan, M. Komaraiah, Optimization of process parameters of Al-Si alloy by centrifugal casting technique using Taguchi design of experiments, Proc. Mater. Sci. 6 (2014) 812–820 [CrossRef] [Google Scholar]
  66. R.W. Armstrong, Mater. Res. Soc. Symp. Proc. 362 (1995) 369 [Google Scholar]
  67. T.R. Smith, R.W. Armstrong, P.M. Hazzledine et al., Mater. Res. Soc. Symp. Proc. 362 (1995) 31 [CrossRef] [Google Scholar]
  68. N. Hansen, Polycrystalline strengthening, Metall. Trans. 16 (1985) 2167–2190 [CrossRef] [Google Scholar]
  69. W. Mangen, E. Nembach, The effect of grain size on the yield strength of the γ′-hardened superalloy NIMONIC PE16, Acta Metall. 37 (1989) 1451–1463 [CrossRef] [Google Scholar]
  70. M.R. Bhatti, W.T. Roberts, in Proceedings of the Second International Symposium on Advanced Materials (1991) 90 [Google Scholar]
  71. D.A. Chang, R. Nasser-Rafi, S.L. Robertson, in: E.A. Loria (Ed.), The Minerals Metals and Materials Society. Superalloy 718, 625 and Various Derivatives (1991) 271 [Google Scholar]
  72. N. Church, P. Wieser, J.F. Wallace, Mod. Castings 49 (1966) 129 [Google Scholar]
  73. U.-G. Metals, J.J. Burke, V. Weiss, eds., Syracuse University Press, New York, NY, 1970 [Google Scholar]
  74. M.C. Flemings, Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 34–44 [Google Scholar]
  75. Y. Fukui, Fundamental investigation of functionally gradient material manu-facturing system using centrifugal force, JSME Inst. J. Ser. III 34 (1991) 144–148 [Google Scholar]
  76. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford (Eds.), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Boston, 1999 [CrossRef] [Google Scholar]
  77. B.M. Zhang, Centrifugal Casting (in Chinese), Machinery Industry Press, Beijing, 2006 [Google Scholar]
  78. S. Raghunandan et al., Processing of primary silicon and Mg2Si reinforced hybrid functionally graded aluminum composites by centrifugal casting, Mater. Sci. Forum 710 (2012) 395–400 [CrossRef] [Google Scholar]
  79. Y. Fukui, H. Okada, N. Kumazawa et al., Near-net-shape forming of Al-Al3Ni functionally graded material over eutectic melting temperature, Metal. Mater. Trans. A 31 (2000) 2627–2636 [CrossRef] [Google Scholar]
  80. Y. Watanabe, I.S. Kim, Y. Fukui, Microstructures of functionally graded materials fabricated by centrifugal solid-particle andin-situ methods, Metals Mater. Int. 11 (2005) 391–399 [CrossRef] [Google Scholar]
  81. Y. Watanabe, H. Sato, T. Ogawa, I.S. Kim, Density and hardness gradients of functionally graded material ring fabricated from Al-3 mass%Cu alloy by a centrifugal in-situ method, Mater. Trans. 48 (2007) 2945–2952 [CrossRef] [Google Scholar]
  82. A. Mehditabar, G.H. Rahimi, S.E. Vahdat, Characterization of Al-Al2Cu functionally graded material produced by using horizontal centrifugal casting, Multidiscip. Model. Mater. Struct. (2018) doi:10.1108/mmms-10-2017-0114 [Google Scholar]
  83. M.R. Derakhshesh, H. Sina, H. Nazemi, The comparison of the microstructure and hardness of Al-B and Al-Mg-B composites, Int. J. Adv. Des. Manufactur. Technol. 4 (2011) 27–31 [Google Scholar]
  84. S. El-Hadad, H. Sato, E. Miura-Fujiwara, Y. Watanabe, Fabrication of Al-Al3Ti/Ti3Al functionally graded materials under a centrifugal force, Materials 3 (2010) 4639–4656 [CrossRef] [Google Scholar]
  85. S. El Hadad et al., Investigation of the mechanical properties in Al/Al3Zr FGMs fabricated by centrifugal casting method, Mater. Sci. Forum 631–632 (2010) 379–384 [Google Scholar]
  86. Y. Watanabe, A. Kawamoto, K. Matsuda, Particle size distributions in functionally graded materials faricated by the centrifugal solid-particle method, Compos. Sci. Technol. 62 (2002) 881–888 [CrossRef] [Google Scholar]
  87. Y. Watanabe, R. Sato, K. Matsuda, Y. Fukui, Evaluation of particle size and particle shape distributions in Al–Al3Ni FGMs fabricated by a centrifugal in-situ method, Sci. Eng. Compos. Mater. 11 (2004) 185–199 [CrossRef] [Google Scholar]
  88. N. Mykura, S. Murphy, In 25th Annual Conference of Metallurgists, 1986 Proceedings International Symposium on Zinc-Aluminium (ZA) Casting Alloys, In: G.B. Lewis, R.J. Barnhurst, C.A. Loon (Eds.), (1986) [Google Scholar]
  89. P. Porot, N. Ventham, R. Jones, J. Spittle, Structural variation in near-eutectic zinc-aluminum alloys, Metallography 20 (1987) 181–197 [CrossRef] [Google Scholar]
  90. G. Chen, M. Tong, Z. Zhu, Study on the macrosegregation of aluminum in centrifugal-cast ZA27 alloy, Mater. Sci. Eng. A 265 (1999) 306–309 [CrossRef] [Google Scholar]
  91. F.L. Mondolfo, Aluminium Alloys: Structure and Properties, Butterworth, London and Boston, 1976 [Google Scholar]
  92. M.G. Kim, S.K. Kim, Y.J. Kim, Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys, Mater. Trans. 43 (2002) 745–750 [CrossRef] [Google Scholar]
  93. W.Z. Luo, J. Shen, Z.X. Min et al., Investigation of interfacial reactions between TiAl alloy and crucible materials during directional solidification process, Rare Metal Mater. Eng. 8 (2009) 031 [Google Scholar]
  94. S. Yanwei, F. Kun, C. Cheng et al., Effects of pouring temperature on interfacial reaction between Ti-47.5Al-2.5V-1Cr alloy and mold during centrifugal casting, J. Wuhan Univ. Technol. Mater. Sci. (2016) [Google Scholar]
  95. X. Huang, C. Liu, X. Lu et al., Aluminum alloy pistons reinforced with SiC fabricated by centrifugal casting[J], J. Mater. Process. Technol. 211 (2011) 1540–1546 [CrossRef] [Google Scholar]
  96. Y.W. Sui, B.S. Li, A.H. Liu et al., Physical simulation of infiltration flow during centrifugal casting titanium alloy melts feeding, Rare Metal Mater. Eng. 38 (2009) 1537–1541 [Google Scholar]
  97. Z.J. Wang, J.L. Du, J.L. Li et al., Influence of sintering temperature on the structure and high-temperature discharge performance of LiNi1/3Mn1/3Co1/3O2 cathode materials, J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 (2015) 894–899 [CrossRef] [Google Scholar]
  98. B. Praveen Kumar, P. Shailesh, S. Sundarrajan, Experimental investigation on centrifugal casting of 5500 alloy: a Taguchi approach, Sci. Res. Essays 7 (2012) 3797–3808 [Google Scholar]
  99. X. Feng, J. Qiu, Y. Ma et al., Influence of processing conditions on microstructure and mechanical properties of large thin-wall centrifugal Ti–6Al–4V casting, J. Mater. Sci. Technol. 32 (2016) 362–371 [CrossRef] [Google Scholar]
  100. R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A 213 (1996) 103–114 [CrossRef] [Google Scholar]
  101. G. Wegmann, J. Albrecht, G. Lutjering et al., Z. Metallk 88 (1997) 764–773 [Google Scholar]
  102. G. Lutjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Mater. Sci. Eng. A 243 (1998) 32–45 [CrossRef] [Google Scholar]
  103. W.H. Miller, R.T. Chen, E.A. Starke, Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo, Metall. Trans. A 18 (1987) 1451–1468 [CrossRef] [Google Scholar]
  104. S. Wei, The Centrifugal Casting Machine Company, and Steve Lampman, Centrifugal Casting. ASM International ASM Handbook 15 (2008) 667–673 [Google Scholar]
  105. X. Lin, C. Liu, H. Xiao, Fabrication of Al-Si-Mg functionally graded materials tube reinforced with in situ Si/Mg2Si particles by centrifugal casting, Compos. B 45 (2013) 8–21 [CrossRef] [Google Scholar]
  106. K. Wang, Z.M. Zhang, T. Yu et al., The transfer behavior in centrifugal casting of SiCp/Al composites, J. Mater. Process. Technol. 242 (2017) 60–67 [CrossRef] [Google Scholar]
  107. S.C. Tjong, Z.Y. Ma, The high-temperature creep behaviour of aluminium-matrix composites reinforced with SiC, Al2O3 and TiB2 particles, Compos. Sci. Technol. 57 (1997) 697–702 [CrossRef] [Google Scholar]
  108. J. Zhang, Z. Fan, Y. Wang, B. Zhou, Hypereutectic aluminium alloy tubes with graded distribution of Mg Si particles prepared by centrifugal casting, Mater. Des. 21 (2000) 149–153 [CrossRef] [Google Scholar]
  109. A. Halvaee, A. Talebi, Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy, J. Mater. Process. Technol. 118 (2001) 123–127 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.