Open Access
Manufacturing Rev.
Volume 7, 2020
Article Number 27
Number of page(s) 14
Published online 27 August 2020
  1. R.K. Ghadai, K. Kalita, S.C. Mondal, B.P. Swain, PECVD process parameter optimization: towards increased hardness of diamond-like carbon, Thin Films. Mater. Manuf. Process. 33 (2018) 1905–1913 [CrossRef] [Google Scholar]
  2. X. Wang, C. Wang, F. Sun, C. Ding, Simulation and experimental researches on HFCVD diamond film growth on small inner-hole surface of wire-drawing die with no filament through the hole, Surf. Coatings Technol. 339 (2018) 1–13 [CrossRef] [Google Scholar]
  3. K. Paprocki, A. Dittmar-Wituski, M. Trzciński, M. Szybowicz, K. Fabisiak, A. Dychalska, The comparative studies of HF CVD diamond films by Raman and XPS spectroscopies, Opt. Mater. (Amst). 95 (2019) 109251 [CrossRef] [Google Scholar]
  4. M. Aydin, Prediction of cutting speed interval of diamond-coated tools with residual stress, Mater. Manuf. Process. 32 (2027) 145–150 [CrossRef] [Google Scholar]
  5. R.K. Ghadai, K. Kalita, S.C. Mondal, B.P. Swain, Genetically optimized diamond-like carbon thin film coatings, Mater. Manuf. Process. 34 (2019) 1476–1487 [CrossRef] [Google Scholar]
  6. Y. Chen, D. Xiang, H. Feng, B. Wu, X. Niu, Fabrication and performance of boron doped textured diamond coated tool, Surf. Eng. (2019) 1–8 [Google Scholar]
  7. Y.K. Lim, E.S. Lee, C.H. Lee, D.S. Lim, Fabrication of hollow boron-doped diamond nanostructure via electrochemical corrosion of a tungsten oxide template, Nanotechnology 29 (2018) 325602 [CrossRef] [Google Scholar]
  8. S. Matsumoto, Y. Sato, M. Kamo, N. Setaka, Vapor, deposition of diamond particles from methane, Jpn. J. Appl. Phys. 21 (1982) 183–185 [CrossRef] [Google Scholar]
  9. M. Abdel-Hafiez, D. Kumar, R. Thiyagarajan, Q. Zhang, R.T. Howie, K. Sethupathi, O. Volkova, A. Vasiliev, W. Yang, H.K. Mao, High-pressure behavior of superconducting boron-doped diamond, Phys. Rev. B 95 (2017) 1–7 [CrossRef] [Google Scholar]
  10. W.L. Shi, X.T. Wei, W. Zhang, Z.G. Wang, C.H. Dong, S. Li, Developments and applications of diamond-like carbon, Appl. Mech. Mater. 864 (2017) 14–24 [CrossRef] [Google Scholar]
  11. S.K. Sarangi, A. Chattopadhyay, A.K. Chattopadhyay, Effect of pretreatment methods and chamber pressure on morphology, quality and adhesion of HFCVD diamond coating on cemented carbide inserts, Appl. Surface Sci. 254 (2008) 3721–3733 [CrossRef] [Google Scholar]
  12. Q. Wei, Z.M. Yu, M.N.R. Ashfold, J. Ye, L. Ma, Applied surface science synthesis of micro- or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition, Appl. Surf. Sci. 256 (2010) 4357–4364 [CrossRef] [Google Scholar]
  13. M.S. Raghuveer, S.N. Yoganand, K. Jagannadham, R.L. Lemaster, J. Bailey, Improved CVD diamond coatings on WC-Co tool substrates, Wear 253 (2002) 1194–1206 [CrossRef] [Google Scholar]
  14. M. Amaral, D.J. Silva, A.J.S. Fernandes, F.M. Costa, F.J. Oliveira, R.F. Silva, Surface activation pre-treatments for NCD films grown by HFCVD, Vaccum 83 (2009) 1228–1232 [CrossRef] [Google Scholar]
  15. T. Zhang, F. Qin, W. Qian, L. Zhang, F. Sun, Characterisation of microcrystalline diamonds deposited by HFCVD. Int. J. Abras. Technol. 8 (2018) 292–309 [CrossRef] [Google Scholar]
  16. K. Dejun, Z. Wen, Z. Ling, Friction-wear behaviors of chemical vapor deposited diamond films at high temperatures, J. Superhard Mater. 41 (2019) 98–105 [CrossRef] [Google Scholar]
  17. R. Zhang, M. Shen, Z. He, The unusual tribological behavior of diamond-like carbon films under high vacuum, Surf. Interface Anal. (2020) 1–9 [Google Scholar]
  18. S. Viswanathan, L. Mohan, P. Bera, S. Shanthiswaroop, M. Muniprakash, H.C. Barshilia, C. Anandan, Corrosion and wear resistance properties of multilayered diamond-like carbon nanocomposite coating, Surf. Interface Anal. 50 (2018) 265–276 [CrossRef] [Google Scholar]
  19. M. Sabzi, S.H. Mousavi Anijdan, M. Asadian, The effect of substrate temperature on microstructural evolution and hardenability of tungsten carbide coating in hot filament chemical vapor deposition, Int. J. Appl. Ceram. Technol. 15 (2018) 1350–1357 [CrossRef] [Google Scholar]
  20. V.M. Kvasnytsya, I.V. Kvasnytsia, A. Zheldak, Cyclic twins of CVD diamond crystals, J. Superhard Mater. 41 (2019) 369–376 [CrossRef] [Google Scholar]
  21. T. Zhang, F. Qin, L. Zhang, L. Gao, F. Sun, HFCVD synthesis of boron-doped microcrystalline diamonds, J. Superhard Mater. 41 (2019) 143–148 [CrossRef] [Google Scholar]
  22. D. Mukherjee, R. Polini, V. Valentini, S.Z. Rotter, J.C. Mendes, HFCVD nanostructured diamond films deposited by a combination of seeding suspensions and novel nucleation process, Int. J. Surf. Sci. Eng. 11 (2017) 225–240 [CrossRef] [Google Scholar]
  23. S.H. Din, M.A. Shah, N.A. Sheikh, Tribological performance of titanium alloy Ti-6Al-4V via CVD-diamond coatings, J. Superhard Mater. 40 (2018) 26–39 [CrossRef] [Google Scholar]
  24. Y. Xu, K. Chen, S. Wang, S. Chen, X. Chen, Influence of pretreatment on diamond-coated tool nucleation and machining performance, Surf. Rev. Lett. 24 (2017) [Google Scholar]
  25. A.N. Jones, W. Ahmed, C.A. Rego, H. Taylor, B.D. Beake, M.J. Jackson, Investigation of the tribological properties of diamond films, J. Mater. Eng. Perform. 16 (2007) 131–134 [CrossRef] [Google Scholar]
  26. A. Panda, S.R. Das, D. Dhupal, Machinability investigation and sustainability assessment in FDHT with coated ceramic tool, Steel Compos. Struct. 34 (2020) 681–698 [Google Scholar]
  27. A. Panda, S.R. Das, D. Dhupal, Machinability investigation of HSLA steel in hard turning with coated ceramic tool: assessment, modeling, optimization and economic aspects, J. Adv. Manufactur. Syst. 18 (2019) 625–655 [CrossRef] [Google Scholar]
  28. U.C. Okonkwo, I.P. Okokpujie, J.E. Sinebe, C.A.K. Ezugwu, Comparative analysis of aluminium surface roughness in end-milling under dry and minimum quantity lubrication (MQL) conditions, Manufactur. Rev. 2 (2015) 30 [CrossRef] [Google Scholar]
  29. A. Das, N. Tirkey, S.K. Patel, S.R. Das, B.B. Biswal, A comparison of machinability in hard turning of EN-24 alloy steel under mist cooled and dry cutting environments with a coated cermet tool, J. Fail. Anal. Prevent. 19 (2019) 115–130 [CrossRef] [Google Scholar]
  30. A. Das, S.K. Patel, B.B. Biswal, S.R. Das, Machinability investigation and cost estimation during finish dry hard turning of AISI 4340 steel with untreated and cryo treated cermet inserts, J. Superhard Mater. 41 (2019) 247–264 [CrossRef] [Google Scholar]
  31. J. Singh, Novel techniques for selective diamond growth on various substrates, J. Mater. Eng. Perform. 3 (1994) 78–85 [Google Scholar]
  32. M.J. Jackson, A.N. Jones, W. Ahmed, Experimental and gas phase modeling of nanocrystalline diamond films grown on titanium alloys for biomedical applications, J. Mater. Eng. Perform. 14 (2005) 565–568 [CrossRef] [Google Scholar]
  33. H. Sein, W. Ahmed, C. Rego, M. Jackson, R. Polini, Comparative investigation of smooth polycrystalline diamond films on dental burs by chemical vapor dep.osition, J. Mater. Eng. Perform. 15 (2006) 195–200 [CrossRef] [Google Scholar]
  34. R. Ahmed, A. Siddique, J. Anderson, C. Engdahl, M. Holtz, E. Piner, Selective area deposition of hot filament CVD diamond on 100 Mm MOCVD grown AlGaN/GaN wafers, Cryst. Growth Des. 19 (2019) 672–677 [CrossRef] [Google Scholar]
  35. A.F. Sartori, S. Orlando, A. Bellucci, D.M. Trucchi, S. Abrahami, T. Boehme, T. Hantschel, W. Vandervorst, J.G. Buijnsters, Laser-induced periodic surface structures (LIPSS) on heavily boron-doped diamond for electrode applications, ACS Appl. Mater. Interfaces 10 (2018) 43236–43251 [CrossRef] [Google Scholar]
  36. A.P. Bolshakov, V.G. Ralchenko, V.Y. Yurov, G. Shu, E.V. Bushuev, A.A. Khomich, E.E. Ashkinazi, D.N. Sovyk, I.A. Antonova, S.S. Savin, Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities, Diam. Relat. Mater. 97 (2019) 107466 [CrossRef] [Google Scholar]
  37. R. Kurniawan, T.J. Ko, A study of surface texturing using piezoelectric tool holder actuator on conventional CNC turning, Int. J. Precis. Eng. Manufactur. 14 (2013) 199–206 [CrossRef] [Google Scholar]
  38. Q. Wu, D.P. Li, Analysis and X-ray measurements of cutting residual stresses in 7075 aluminum alloy in high speed machining, Int. J. Precis. Eng. Manufactur. 15 (2014) 1499–1506 [CrossRef] [Google Scholar]
  39. N.V. Novikov, Superhard materials in mechanical engineering, Powder Metal. Metal Ceram. 32 (1993) 386–389 [CrossRef] [Google Scholar]
  40. A. Panda, S.R. Das, D. Dhupal, Machinability investigation of HSLA steel in hard turning with coated ceramic tool: assessment, modeling, optimization and economic aspects, J. Adv. Manufactur. Syst. 18 (2019) 625–655 [CrossRef] [Google Scholar]
  41. A. Anand, A.K. Behera, S.R. Das, An overview on economic machining of hardened steels by hard turning and its process variables, Manufactur. Rev. 6 (2019) 4 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.