Open Access
Manufacturing Rev.
Volume 7, 2020
Article Number 31
Number of page(s) 10
Published online 23 September 2020
  1. P. Balakrishnan, M.S. Sreekala, S. Thomas, Fundamental Biomaterials: Metals (Woodhead Publishing, Duxford, 2018) [Google Scholar]
  2. C. Oldani, A. Dominguez, Titanium as a biomaterial for implants, in Recent Advances in Arthroplasty , edited by S. Fokter (IntechOpen, London, 2012), pp. 149–162 [Google Scholar]
  3. J.-K. Du, C.-Y. Chao, K.-Y. Chiu, Y.-H. Chang, K.-K. Chen, J.-H. Wu, J.-N. Wu, Antibacterial properties and corrosion resistance of the newly developed biomaterial, Ti–12Nb–1Ag alloy, Metals 7 (2017) 566 [CrossRef] [Google Scholar]
  4. M. Jäger, H.P. Jennissen, F. Dittrich, A. Fischer, H.L. Köhling, Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants, Materials 10 (2017) 1302 [CrossRef] [Google Scholar]
  5. M. Ziąbka, E. Menaszek, J. Tarasiuk, S. Wroński, Biocompatible nanocomposite implant with silver nanoparticles for otology–in vivo evaluation, Nanomaterials 8 (2018) 764 [CrossRef] [Google Scholar]
  6. J.A. García, P.J. Rivero, R. Ortiz, I. Quintana, R.J. Rodríguez, Advanced surface treatments for improving the biocompatibility of prosthesis and medical implants, in Advanced Surface Engineering Research , edited by M.A. Chowdhury (IntechOpen, London, 2018), pp. 199–219 [Google Scholar]
  7. W. Paul, C.P. Sharma, Inorganic nanoparticles for targeted drug delivery, in Biointegration of Medical Implant Materials , edited by C.P. Sharma (Woodhead Publishing, Cambridge, 2020), pp. 333–373 [CrossRef] [Google Scholar]
  8. V. Dahiya, P. Shukla, S. Gupta, Surface topography of dental implants: a review, J. Dental Implants 4 (2014) 66–71 [CrossRef] [Google Scholar]
  9. F. Parnia, J. Yazdani, V. Javaherzadeh, S. Maleki Dizaj, Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes, J. Pharm. Pharm. Sci. 20 (2017) 148–160 [CrossRef] [Google Scholar]
  10. G.G. Walmsley, A. McArdle, R. Tevlin, A. Momeni, D. Atashroo, M.S. Hu, A.H. Feroze et al., Nanotechnology in bone tissue engineering, Nanomedicine 11 (2015) 1253–1263 [CrossRef] [Google Scholar]
  11. A. Radtke, M. Grodzicka, M. Ehlert, T. Jędrzejewski, M. Wypij, P. Golińska, To be microbiocidal and not to be cytotoxic at the same time… —silver nanoparticles and their main role on the surface of titanium alloy implants, J. Clin. Med. 8 (2019) 334 [CrossRef] [Google Scholar]
  12. D. Beutner, K.-B. Hüttenbrink, Passive and active middle ear implants, GMS Curr. Topics Otorhinolaryngol. Head Neck Surg 8 (2009) Doc09 [Google Scholar]
  13. N. Karak, Fundamentals of sustainable nanostructural materials at bio-nano interface, in Dynamics of Advanced Sustainable Nanomaterials and Their Related Nanocomposites at the Bio-nano Interface , edited by N. Karak (Elsevier, St. Louis, 2019), pp. 1–24 [Google Scholar]
  14. A.M. Methley, S. Campbell, C. Chew-Graham, R. McNally, S. Cheraghi-Sohi, PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews, BMC Health Serv. Res. 14 (2014) 579 [CrossRef] [Google Scholar]
  15. D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, The PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, PLoS Med. 6 (2009) e1000097 [CrossRef] [Google Scholar]
  16. J.P. Higgins, D.G. Altman, P.C. Gøtzsche, P. Jüni, D. Moher, A.D. Oxman, J. Savovic et al., The Cochrane collaboration's tool for assessing risk of bias in randomised trials, BMJ 343 (2011) d5928 [CrossRef] [PubMed] [Google Scholar]
  17. I. Lampé, D. Beke, S. Biri, I. Csarnovics, A. Csik, Z. Dombrádi, P. Hajdu et al., Investigation of silver nanoparticles on titanium surface created by ion implantation technology, Int. J. Nanomed. 14 (2019) 4709–4721 [CrossRef] [Google Scholar]
  18. M. Dziaduszewska, M. Wekwejt, M. Bartmański, A. Pałubicka, G. Gajowiec, T. Seramak, A.M. Osyczka, A. Zieliński, The effect of surface modification of Ti13Zr13Nb alloy on adhesion of antibiotic and nanosilver-loaded bone cement coatings dedicated for application as spacers, Materials 12 (2019) 2964 [CrossRef] [Google Scholar]
  19. Y. Yin, Y. Li, W. Cai, J. Sui, One-step deposition of antibacterial Ag@Pdop hybrid films on an NiTi alloy, RSC Adv. 9 (2019) 29263–29272 [CrossRef] [Google Scholar]
  20. J. Wang, G. Wu, X. Liu, G. Sun, D. Li, H. Wei, A decomposable silica-based antibacterial coating for percutaneous titanium implant, Int. J. Nanomed. 12 (2017) 371–379 [CrossRef] [Google Scholar]
  21. E. De Giglio, D. Cafagna, S. Cometa, A. Allegretta, A. Pedico, L.C. Giannossa, L. Sabbatini, An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization, Anal. Bioanal. Chem. 405 (2013) 805–816 [CrossRef] [Google Scholar]
  22. H. Zhang, M. Hatoko, D. Yin, Y. Yang, Y. Zeng, S. Komasa, T. Kusumoto et al., Antibacterial activity and biocompatibility of nanoporous titanium doped with silver nanoparticles and coated with N-acetyl cysteine, J. Hard Tissue Biol. 27 (2018) 351–358 [CrossRef] [Google Scholar]
  23. A.S.K. Kiran, T.S. Kumar, R. Sanghavi, M. Doble, S. Ramakrishna, Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings, Nanomaterials 8 (2018) 860 [CrossRef] [Google Scholar]
  24. Y. Yang, Y. Zhang, R. Hu, Q. Huang, K. Wu, L. Zhang, P. Tang, C. Lin, Antibacterial and cytocompatible AgNPs constructed with the assistance of Mefp-1 for orthopaedic implants, RSC Adv. 7 (2017) 38434–38443 [CrossRef] [Google Scholar]
  25. J. Liao, M. Anchun, Z. Zhu, Y. Quan, Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility, Int. J. Nanomed. 5 (2010) 337–342 [Google Scholar]
  26. S. Ferraris, A. Venturello, M. Miola, A. Cochis, L. Rimondini, S. Spriano, Antibacterial and bioactive nanostructured titanium surfaces for bone integration, Appl. Surf. Sci. 311 (2014) 279–291 [CrossRef] [Google Scholar]
  27. S. Kranz, A. Guellmar, A. Voelpel, T. Lesser, S. Tonndorf-Martini, J. Schmidt, C. Schrader et al., Bactericidal and biocompatible properties of plasma chemical oxidized titanium (TiOB®) with antimicrobial surface functionalization, Materials 12 (2019) 866 [CrossRef] [Google Scholar]
  28. I.S.V. Marques, M.F. Alfaro, M.T. Saito, N.C. da Cruz, C. Takoudis, R. Landers, M.F. Mesquita et al., Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces, Biointerphases 11 (2016) 031008 [CrossRef] [Google Scholar]
  29. S. Vignesh Nayar, Bhuminathan, Mahadevan, S. Santhosh, Comparative evaluation of the three different surface treatments − conventional, laser and nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: an in vitro study, J. Pharm. Bioallied Sci. 7 (2015) S87–S91 [CrossRef] [Google Scholar]
  30. Z. Wang, Y. Sun, D. Wang, H. Liu, R.I. Boughton, In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation, Int. J. Nanomed. 8 (2013) 2903–2916 [Google Scholar]
  31. M. Kaczmarek, K. Jurczyk, J.K. Koper, A. Paszel-Jaworska, A. Romaniuk, N. Lipińska, J. Żurawski, P. Urbaniak, J. Jakubowicz, M.U. Jurczyk, In vitro biocompatibility of anodized titanium with deposited silver nanodendrites, J. Mater. Sci. 51 (2016) 5259–5270 [CrossRef] [Google Scholar]
  32. M. Guan, Y. Chen, Y. Wei, H. Song, C. Gao, H. Cheng, Y. Li, K. Huo, J. Fu, W. Xiong, Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO2 nanorods in vitro and in vivo, Int. J. Nanomed. 14 (2019) 2903–2914 [CrossRef] [Google Scholar]
  33. A. Shivaram, S. Bose, A. Bandyopadhyay, Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating, J. Mech. Behavior of Biomed. Mater. 59 (2016) 508–518 [CrossRef] [Google Scholar]
  34. X. Lu, B. Zhang, Y. Wang, X. Zhou, J. Weng, S. Qu, B. Feng, F. Watari, Y. Ding, Y. Leng, Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition, J. Roy. Soc. Interf. 8 (2011) 529–539 [CrossRef] [Google Scholar]
  35. X. Zeng, S. Xiong, S. Zhuo, C. Liu, J. Miao, D. Liu, H. Wang, Y. Zhang, Z. Zheng, Nanosilver/poly (DL-lactic-co-glycolic Acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity, Int. J. Nanomed. 14 (2019) 1849–1863 [CrossRef] [Google Scholar]
  36. W. Zhang, S. Wang, S. Ge, J. Chen, P. Ji, The relationship between substrate morphology and biological performances of nano-silver-loaded dopamine coatings on titanium surfaces, Royal Soc. Open Sci. 5 (2018) 172310 [CrossRef] [Google Scholar]
  37. M. Akter, M.T. Sikder, M.M. Rahman, A.K.M.A. Ullah, K.F.B. Hossain, S. Banik, T. Hosokawa, T. Saito, M. Kurasaki, A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives, J. Adv. Res. 9 (2018) 1–16 [CrossRef] [Google Scholar]
  38. G. Sánchez-Sanhueza, D. Fuentes-Rodríguez, H. Bello-Toledo, Copper nanoparticles as potential antimicrobial agent in disinfecting root canals. a systematic review, Int. J. Odontostomatol. 10 (2016) 547–554 [CrossRef] [Google Scholar]
  39. N.G. de Oliveira, P.R. de Souza Araújo, M.T. da Silveira, A.P. Veras Sobral, M.V. Carvalho, Comparison of the biocompatibility of calcium silicate-based materials to mineral trioxide aggregate: systematic review, Eur. J. Dent. 12 (2018) 317–326 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.