Open Access
Manufacturing Rev.
Volume 8, 2021
Article Number 5
Number of page(s) 13
Published online 17 February 2021
  1. R.R. Boyer, Titanium and its alloys: metallurgy, heat treatment and alloy characteristics. In: Encyclopedia of Aerospace Engineering, American Cancer Society, 2010 [Google Scholar]
  2. M. Jackson, R.R. Boyer, Titanium and its alloys: processing, fabrication and mechanical performance. In: Encyclopedia of Aerospace Engineering , John Wiley & Sons, Ltd (2010) [Google Scholar]
  3. R.R. Boyer, Attributes, characteristics, and applications of titanium and its alloys, JOM 62 (2010) 21–24 [CrossRef] [Google Scholar]
  4. G. Lütjering, J.C. Williams, Engineering Materials: Titanium, Second, Springer, Berlin Heidelberg Newyork, 2007 [Google Scholar]
  5. M.J. Donachie, Titanium: A Technical Guide, 2nd Edition. ASM International, 2000 [Google Scholar]
  6. C. Leyens, M. Peters, Titanium and titanium alloys: fundamentals and application, WILEY-VCH, Germany, 2003 [CrossRef] [Google Scholar]
  7. M.O. Bodunrin, L.H. Chown, J.A. Omotoyinbo, Development of low-cost titanium alloys: a chronicle of challenges and opportunities, Mater. Today Proc. (2020) [Google Scholar]
  8. M.O. Bodunrin, K.K. Alaneme, L.H. Chown, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics, J. Mater. Res. Technol. 4 (2015) 434–445 [CrossRef] [Google Scholar]
  9. F.H. (Sam) Froes, H. Friedrich, J. Kiese, D. Bergoint, Titanium in the family automobile: the cost challenge, JOM 56 (2004) 40–44. [CrossRef] [Google Scholar]
  10. M.O. Bodunrin, L.H. Chown, J.W. van der Merwe, K.K. Alaneme, On the substitution of vanadium with iron in Ti-6Al-4V: thermo-calc simulation and processing map considerations for design of low-cost alloys, Mater. Sci. Eng. A 791 (2020) 139622. [CrossRef] [Google Scholar]
  11. SAmaterials (2014) Why Titanium is So Expensive. In: Stanford Advanced Materials . (accessed 22 October 2016) [Google Scholar]
  12. A. Pramanik, Problems and solutions in machining of titanium alloys, Int. J. Adv. Manuf. Technol. 70 (2014) 919–928 [CrossRef] [Google Scholar]
  13. L. Bolzoni, E.M. Ruiz-Navas, E. Gordo, Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys, Mater. Des. 110 (2016) 317–323 [CrossRef] [Google Scholar]
  14. P.G. Esteban, E.M. Ruiz-Navas, L. Bolzoni, E. Gordo, Low-cost titanium alloys? Iron may hold the answers, Metal Powder Report 63 (2008) 24–27 [CrossRef] [Google Scholar]
  15. N.S. Weston, M. Jackson, FAST-forge − a new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged components, J. Mater. Process. Technol. 243 (2017) 335–346 [CrossRef] [Google Scholar]
  16. N.S. Weston, M. Jackson, FAST-forge of titanium alloy swarf: a solid-state closed-loop recycling approach for aerospace machining waste, Metals 10 (2020) 296 [CrossRef] [Google Scholar]
  17. K.-H. Park, M.A. Suhaimi, G.-D. Yang et al., Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL), Int. J. Precis. Eng. Manuf. 18 (2017) 5–14 [CrossRef] [Google Scholar]
  18. R.S. Revuru, J.Z. Zhang, N.R. Posinasetti, T. Kidd, Optimization of titanium alloys turning operation in varied cutting fluid conditions with multiple machining performance characteristics, Int. J. Adv. Manuf. Technol. 95 (2018) 1451–1463 [CrossRef] [Google Scholar]
  19. R.S. Revuru, N.R. Posinasetti, V.R. Vsn, M. Amrita, Application of cutting fluids in machining of titanium alloys—a review, Int. J. Adv. Manuf. Technol. 91 (2017) 2477–2498 [CrossRef] [Google Scholar]
  20. J.D. Kechagias, K.-E. Aslani, N.A. Fountas et al., A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy, Measurement 151 (2020) 107213 [CrossRef] [Google Scholar]
  21. M.O. Bodunrin, L.H. Chown, Towards the development of experimental (α+β) Ti-Al-V-Fe alloys, Mater. Today Proc. (2020) [Google Scholar]
  22. S. Ganguli, S.G. Kapoor, Improving the performance of milling of titanium alloys using the atomization-based cutting fluid application system, J. Manuf. Process. 23 (2016) 29–36 [CrossRef] [Google Scholar]
  23. M. Dhananchezian, M. Pradeep Kumar, Cryogenic turning of the Ti–6Al–4V alloy with modified cutting tool inserts, Cryogenics 51 (2011) 34–40 [Google Scholar]
  24. N. Varote, S.S. Joshi, Microstructural analysis of machined surface integrity in drilling a titanium alloy, J. Mater. Eng. Perform 26 (2017) 4391–4401 [CrossRef] [Google Scholar]
  25. A.D. Davydov, T.B. Kabanova, V.M. Volgin, Electrochemical machining of titanium. Review, Russ. J. Electrochem. 53 (2017) 941–965 [CrossRef] [Google Scholar]
  26. J.E. Abu Qudeiri, A.-H.I. Mourad, A. Ziout et al., Electric discharge machining of titanium and its alloys: review, Int. J. Adv. Manuf. Technol. 96 (2018) 1319–1339. [CrossRef] [Google Scholar]
  27. A.K. Singh, D.P.S. Rao, A Review on Ultrasonic Machining of Titanium Alloys, International Journal of Research and Scientific Innovation (IJRSI) 5 (2018) 2321–2705 [Google Scholar]
  28. M. Mia, M.A. Khan, S.S. Rahman, N.R. Dhar, Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V, Int. J. Adv. Manuf. Technol. 90 (2017) 109–118 [CrossRef] [Google Scholar]
  29. Y. Gao, G. Wang, M.J. Bermingham, M.S. Dargusch, Cutting force, chip formation, and tool wear during the laser-assisted machining a near-alpha titanium alloy BTi-6431S, Int. J. Adv. Manuf. Technol. 79 (2015) 1949–1960 [CrossRef] [Google Scholar]
  30. D. Biermann, H. Abrahams, M. Metzger, Experimental investigation of tool wear and chip formation in cryogenic machining of titanium alloys, Adv. Manuf. 3 (2015) 292–299 [CrossRef] [Google Scholar]
  31. A. Jain, N. Khanna, V. Bajpai, FE simulation of machining of Ti-54M titanium alloy for industry relevant outcomes, Measurement 129 (2018) 268–276 [CrossRef] [Google Scholar]
  32. M.H. Ali, M.N.M. Ansari, B.A. Khidhir et al., Simulation machining of titanium alloy (Ti-6Al-4V) based on the finite element modeling, J. Braz. Soc. Mech. Sci. Eng. 36 (2014) 315–324 [CrossRef] [Google Scholar]
  33. R. Li, A.J. Shih, Finite element modeling of 3D turning of titanium, Int. J. Adv. Manuf. Technol. 29 (2006) 253–261 [CrossRef] [Google Scholar]
  34. S.R. Oke, G.S. Ogunwande, M. Onifade et al., An overview of conventional and non-conventional techniques for machining of titanium alloys, Manuf. Rev. 7 (2020) 34. [Google Scholar]
  35. J.O. Obiko, F.M. Mwema, M.O. Bodunrin, Finite element simulation of X20CrMoV121 steel billet forging process using the Deform 3D software, SN Appl. Sci. 1 (2019) 1–10 [CrossRef] [Google Scholar]
  36. J. Oirere, O. Fredrick, M. Mwema, H. Shangwira, Forging optimisation process using numerical simulation and Taguchi method, SN Appl. Sci. (2020) [Google Scholar]
  37. A. Khan, K. Maity, 3D finite element modeling for estimating key machinability aspects in turning of commercially pure titanium, Surf. Rev. Letters 26 (2019) 1–20 [Google Scholar]
  38. T. Tamizharasan, N. Kumar Senthil, Numerical simulation of effects of machining parameters and tool geometry using DEFORM-3D: optimization and experimental validation, World J. Model. Simul. 10 (2014) 49–59 [Google Scholar]
  39. M. Maarefdoust, Simulation of finite volume of hot forging process of industrial gear. 2012 International Conference on Networks and Information (ICNI 2012) 57 (2012) 111–115 [Google Scholar]
  40. S. Wangchaichune, S. Suranuntchai, Finite element simulation of hot forging process for KVBM gear, Appl. Mech. Mater. 875 (2018) 30–35 [CrossRef] [Google Scholar]
  41. M.A.P. Juárez, E.A. Gómez, H.P. Mora et al., Finite element simulation and experimental analysis of cutting forces in orthogonal turning in AISI-1045 steel, Comput. Sist. 23 (2019) 7–20 [Google Scholar]
  42. R. Rajesh, J. Lilly Mercy, S. Ravikumar, A. Singh, Design and analysis of tool wear characteristics during turning using deform 3D, ARPN J. Eng. Appl. Sci. 12 (2017) 4940–4952 [Google Scholar]
  43. R.K. Gupta, B. Kumar, T.V.K. Gupta, D.S. Ramteke, Theoretical and experimental analysis of hard material machining, Int. J. Mech. Mechatron. Eng. 7 (2013) 2132–2138 [Google Scholar]
  44. B. Borsos, A. Csörgo, A. Hidas et al., Two-dimensional finite element analysis of turning processes, Period. Polytech. Mech. Eng. 61 (2017) 44–54 [CrossRef] [Google Scholar]
  45. R.M. Genga, P. Zeman, J. Brajer et al., Effects of Mo2C, Ni binder and laser surface modification on WC inserts for turning Ti-6Al-4V, Int. J. Refract. Metals Hard Mater. 87 (2020) 105145 [CrossRef] [Google Scholar]
  46. S.H. You, J.H. Lee, S.H. Oh, A study on cutting characteristics in turning operations of titanium alloy used in automobile, Int. J. Precis. Eng. Manuf. 20 (2019) 209–216 [CrossRef] [Google Scholar]
  47. S. Kosaraju, V.G. Anne, B.B. Popuri, Finite element simulation of cutting forces in turning Ti6AI4V using deform 3D, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) 2 (2013) 1–7 [Google Scholar]
  48. E. Kuram, Nose radius and cutting speed effects during milling of AISI 304 material, Mater. Manuf. Process. 32 (2017) 185–192 [CrossRef] [Google Scholar]
  49. W. Bin Rashid, S. Goel, Parametric design optimization of hard turning of AISI 4340 steel (69 HRC), Int. J. Adv. Manuf. Technol. 82 (2016) 451–462 [CrossRef] [Google Scholar]
  50. B.K.M. Paul, T. Raju, B. Biju, Optimization of cutting parameters in hard turning of AISI 4340 steel, International Journal of Innovative Research in Advanced Engineering (IJIRAE) 1 (2014) 2349–2163 [Google Scholar]
  51. N. Senthilkumar, T. Tamizharasan, Effect of tool geometry in turning AISI 1045 steel: experimental investigation and FEM analysis, Arab. J. Sci. Eng. 39 (2014) 4963–4975 [CrossRef] [Google Scholar]
  52. T. Özel, M. Sima, A.K. Srivastava, B. Kaftanoglu, Investigations on the effects of multi-layered coated inserts in machining Ti-6Al-4V alloy with experiments and finite element simulations, CIRP Ann.- Manuf. Technol. 59 (2010) 77–82 [CrossRef] [Google Scholar]
  53. M. Vosough, F. Schultheiss, M. Agmell, J.-E. Ståhl, A method for identification of geometrical tool changes during machining of titanium alloy Ti6Al4V, Int. J. Adv. Manuf. Technol. 67 (2013) 339–348 [CrossRef] [Google Scholar]
  54. M. Lotfi, M. Jahanbakhsh, A. Akhavan Farid, Wear estimation of ceramic and coated carbide tools in turning of Inconel 625: 3D FE analysis, Tribol. Int. 99 (2016) 107–116 [CrossRef] [Google Scholar]
  55. T. Tamizharasan, N. Senthilkumar, Numerical simulation of effects of machining parameters and tool geometry using DEFORM-3D: optimization and experimental validation, 13 [Google Scholar]
  56. T. Tamizharasan, N. Senthil Kumar, Optimization of cutting inserts geometry using DEFORM-3D: numerical simulation and experimental validation, Int. J. Simul. Model 11 (2012) 65–76 [CrossRef] [Google Scholar]
  57. A. Khan, K. Maity, 3D Finite element modeling for estimating key machinability aspects in turning of commercially pure titanium, Surf. Rev. Lett. 26 (2019) 1850136 [CrossRef] [Google Scholar]
  58. N. Ahmed, S. Ahmad, S. Anwar et al., Machinability of titanium alloy through laser machining: material removal and surface roughness analysis, Int. J. Adv. Manuf. Technol. 105 (2019) 3303–3323 [CrossRef] [Google Scholar]
  59. L.B. Abhang, M. Hameedullah, Chip-tool interface temperature prediction model for turning process, Int. J. Eng. Sci. Technol. 2 (2010) 12 [Google Scholar]
  60. M. Kamruzzaman, S.S. Rahman, Md.Z.I. Ashraf, N.R. Dhar, Modeling of chip–tool interface temperature using response surface methodology and artificial neural network in HPC-assisted turning and tool life investigation, Int. J. Adv. Manuf. Technol. 90 (2017) 1547–1568 [CrossRef] [Google Scholar]
  61. J.C. Heigel, E. Whitenton, B. Lane et al., Infrared measurement of the temperature at the tool-chip interface while machining Ti-6Al-4V, J. Mater. Proc. Technol. 243 (2017) 123–130 [CrossRef] [Google Scholar]
  62. S. Kosaraju, V.G. Anne, B.B. Popuri, Taguchi analysis on cutting forces and temperature in turning titanium Ti-6Al-4V, 5 [Google Scholar]
  63. N. Andriya, M. Laeng, P. Rao, S. Ghosh, The 2012 International Conference of Manufacturing Engineering and Engineering Management, the 2012 International Conference of Mechanical Engineering. IAENG, Hong Kong, 2012 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.