Open Access
Issue |
Manufacturing Rev.
Volume 8, 2021
|
|
---|---|---|
Article Number | 6 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/mfreview/2021004 | |
Published online | 24 February 2021 |
- V. Ferreira, P. Egizabal, V. Popov, M. García de Cortázar, A. Irazustabarrena, A.M. López-Sabirón, G. Ferreira, Lightweight automotive components based on nanodiamond-reinforced aluminium alloy: a technical and environmental evaluation, Diam. Relat. Mater. 92 (2019) 174–186 [Google Scholar]
- J. Singh, A. Chauhan, Characterization of hybrid aluminium matrix composites for advanced applications − a review, J. Mater. Res. Technol. 5 (2016) 159–169 [Google Scholar]
- S.R. Oke, O.E. Falodun, M.R. Mahlatse, O.O. Ige, P.A. Olubambi, Investigation on densification and microstructure of Al-TiO2 composite produced by Spark plasma sintering, Mater. Today Proc. 18 (2019) 3182–3188. [Google Scholar]
- M. Shukla, S.K. Dhakad, P. Agarwal, M.K. Pradhan, Characteristic behaviour of aluminium metal matrix composites- a review, Mater. Today Proc. 5 (2018) 5830–5836 [Google Scholar]
- P. Garg, A. Jamwal, D. Kumara, K.K. Sadasivuni, C.M. Hussain, P.J. Gupta, Advance research progresses in aluminium matrix composites: manufacturing and applications, Mater. Res. Technol. 8 (2019) 4924–4939 [Google Scholar]
- X. Liu, J. Li, E. Liu, C. He, C. Shi, N. Zhao, Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite, Mater. Sci. Eng. A 748 (2019) 52–58 [Google Scholar]
- R.T. Mousavian, S. Behnamfard, R.A. Khosroshahi, J. Zavašniksssss, P. Ghosh, S. Krishnamurthy, A. Heidarzadeh, D. Brabazon, Strength-ductility trade-off via SiC nanoparticle dispersion in A356 aluminium matrix, Mater. Sci. Eng. A 170 (2019) 586–592 [Google Scholar]
- K.K. Alaneme, Y.O. Anabaranze, S.R. Oke, Softening resistance, dimensional stability and corrosion behaviour of alumina and rice husk ash reinforced aluminium matrix composites subjected to thermal cycling, Tribol. Ind. 37 (2015) 204–214. [Google Scholar]
- S.P. Shivakumar, A.S. Sharan, K. Sadashivappa, Experimental investigations on vibration properties of aluminium matrix composites reinforced with iron oxide particles, Appl. Mech. Mater. 895 (2019) 22–126 [Google Scholar]
- G. Garces, P. Pérez, R. Barea, J. Medina, A. Stark, N. Schell, P. Adeva, Increase in the mechanical strength of Mg-8Gd-3Y-1Zn alloy containing long-period stacking ordered phases using equal channel angular pressing processing, Metals 221 (2019) 1–17 [Google Scholar]
- Q.L. Zhao, T.T. Shan, R. Geng, Y.Y. Zhang, H.Y. He, F. Qiu, Q.C. Jiang, Effect of preheating temperature on the microstructure and tensile properties of 6061 aluminum alloy processed by hot rolling-quenching, Metals 182 (2019) 1–8 [Google Scholar]
- T. Ye, Y. Xu, J. Ren, Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite, Mater. Sci. Eng. A 753 (2019) 146–155 [Google Scholar]
- K.C. Nayak, P.P. Date, Hot deformation flow behavior of powder metallurgy based Al-SiC and Al-Al2O3 composite in a single step and two-step uni-axial compression, Mater. Charact. 151 (2019) 563–581 [Google Scholar]
- V. Bharath, S.S. Ajawan, M. Nagaral, V. Auradi, S.A. Kori, Characterization and mechanical properties of2014 aluminum Alloy reinforced with Al2O3 composite produced by two-stage stir casting route, J. Inst. Eng. India Ser. C 100 (2019) 277–282 [Google Scholar]
- J. Liu, Z. Chen, F. Zhang, G. Ji, M. Wang, Y. Ma, V. Ji, S. Zhong, Y. Wu, H. Wang, Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process, Mater. Res. Lett. 6 (2018) 406–412 [Google Scholar]
- J. Hashim, L. Looney, M.S.J. Hashmi, The enhancement of wettability of SiC particles in cast aluminium matrix composites, J. Mater. Process. Technol. 119 (2001) 329–335 [Google Scholar]
- G. Li, Y. Qu, Y. Yang, Q. Zhou, X. Liu, R. Li, Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring, J. Mater. Sci. Tech. 40 (2020) 81–87 [CrossRef] [Google Scholar]
- A. Tan, J. Teng, X. Zeng, D. Fu, H. Zhang, Fabrication of aluminium matrix hybrid composites reinforced with SiC microparticles and TiB2 nanoparticles by powder metallurgy, Powder Metall. 60 (2017) 66–72 [CrossRef] [Google Scholar]
- S. Sharma, T. Nanda, O.P. Pandey, Effect of particle size on dry sliding wear behaviour of sillimanite reinforced aluminium matrix composites, Ceram. Int. 44 (2018) 104–114 [CrossRef] [Google Scholar]
- K. Shirvanimoghaddam, H. Khayyam, H. Abdizadeh, M.K. Akbari, A.H. Pakseresht, F. Abdi, A. Abbasi, M. Naebe, Effect of B4C, TiB2 and ZrSiO4 ceramic particles on mechanical properties of aluminium matrix composites: experimental investigation and predictive modelling, Ceram. Int. 42 (2016) 6206–6220 [CrossRef] [Google Scholar]
- K.J. Joshua, S.J. Vijay, D.P. Selvaraj, Effect of nano TiO2 particles on microhardness and microstructural behaviour of AA7068 metal matrix composites, Ceramics 44 (2018) 20774–20781 [CrossRef] [Google Scholar]
- J. Gayathri, R. Elansezhian, Influence of dual reinforcement (nano CuO + reused spent alumina catalyst) on microstructure and mechanical properties of aluminium metal matrix composite, J. Alloys Compd. 829 (2020) 154538 [CrossRef] [Google Scholar]
- A. Tan, J. Teng, X. Zeng, D. Fu, H. Zhang, Fabrication of aluminium matrix hybrid composites reinforced with SiC microparticles and TiB2 nanoparticles by powder metallurgy, Powder Metall. 60 (2017) 66–72 [CrossRef] [Google Scholar]
- F.E. El-Labban, M. Abdelaziz, E.R.I. Mahmoud, Preparation and characterization of squeeze cast Al-Si piston alloy reinforced by Ni and nano Al2O3 particle, J. King Saud Univ. Eng. Sci. 28 (2016) 230–239 [Google Scholar]
- J. Li, J. Nie, Q. Xu, K. Zhao, X. Liu, Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles, Mater. Sci. Eng. A 770 (2020) 138488 [CrossRef] [Google Scholar]
- S. Aktaş, E. Diler, A review on the effects of micro-nano particle size and volume fraction on microstructure and mechanical properties of metal matrix composites manufactured via mechanical alloying, Int. Adv. Res. Eng. 2 (2018) 74–68 [Google Scholar]
- R.J.H. Navasingh, R. Kumar, K. Marimuthu, S. Planichamy, A. Khan, A.M. Asiri, M. Asad, A review. Chap. 6. In nanocarbon and its composites: Preparation, properties and applications Sawston, UK: Woodhead Publishing Series, Compos. Eng. 6 (2019) 153–170 [Google Scholar]
- M.O. Bodunrin, K.K. Alaneme, L.H. Chow, Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical corrosion and tribological characteristics, J. Mater. Res. Technol. 4 (2015) 434–445 [CrossRef] [Google Scholar]
- K.K. Alaneme, E.A. Okotete, V.A. Fajemisin, M.O. Bodunrin, Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: a review, J. Arab. Basic Appl. Sci. 26 (2019) 311–330 [CrossRef] [Google Scholar]
- G. Krishna, K.P. Kumar, M.N. Swapna, B.J. Rao, N.R.M.R. Bhargava, Fabrication characterization and mechanical behaviour of A356/copper particulate reinforced metallic composites, Mater. Today Proc. 5 (2018) 7685–7691 [CrossRef] [Google Scholar]
- S. Madhusudan, M.M.M. Sarcar, N.B.R.M. Rao, Mechanical properties of Aluminum-Copper(p) composite metallic materials, J. Appl. Res. Technol. 14 (2016) 293–299 [CrossRef] [Google Scholar]
- A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, I.N. Orbulov, Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres, Mater. Des. 83 (2015) 230–237 [CrossRef] [Google Scholar]
- K.K. Alaneme, A.O. Aluko, Production and age hardening behaviour of borax premixed silicon carbide reinforced Al-Mg-Si alloy composites developed by double stir casting techniques, West Indian J. Eng. 34 (2012) 80–85 [Google Scholar]
- K.K. Alaneme, S.A. Babalola, M.O. Bodunrin, On the prediction of hot deformation mechanisms and workability in Al6063/Nip and Al6063/steelp composites using hyperbolic-sine constitutive equation, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.05.463 [Google Scholar]
- Gleeble Application Note APN 017 https://www.gleeble.com/resources/application-notes.html [Google Scholar]
- S. Solhjoo, S. Khoddam, Evaluation of barrelling and friction in uniaxial compression test: a kinematic analysis, Int. J. Mech. Sci. 15 (2019) 486–493 [CrossRef] [Google Scholar]
- M.J. Lūton, C.M. Sellars, Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation, Acta Metall. 17 (1969) 1033–1043 [CrossRef] [Google Scholar]
- K. Wang, X. Li, G. Shu, G. Tang, Hot deformation behavior and microstructural evolution of particulate reinforced AA6061/B4C composite during compression at elevated temperature, J. Mater. Sci. Eng. A 696 (2017) 248–256 [CrossRef] [Google Scholar]
- Y.Y. Zong, D.B. Shan, M. Xu, Y. Lv, Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation, J. Mater. Process. Technol. 209 (2009) 1988–1994 [CrossRef] [Google Scholar]
- R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Current issues in recrystallization: a review, Mater. Sci. Eng. A 238 (1997) 219–274 [CrossRef] [Google Scholar]
- W. Chuan, H. Liang, Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region, Vacuum 156 (2018) 384–401 [CrossRef] [Google Scholar]
- H. Mirzadeh, Constitutive modelling and prediction of hot deformation flow stress under dynamic recrystallization conditions, Mech. Mater. 85 (2015) 66–79 [CrossRef] [Google Scholar]
- M. Härtel, C. Illgen, P. Frint, M. Wagner, On the PLC effect in a particle reinforced AA2017 alloy, Metals 8 (2018) 88–95 [CrossRef] [Google Scholar]
- L. Blaz, P. Lobry, M. Zygmunt-Kiper, J. Koziel, G. Wloch, S. Dymek, Strain rate sensitivity of Al-based composites reinforced with MnO2 additions, J. Alloys Compd. 619 (2015) 652–658 [CrossRef] [Google Scholar]
- X. Feng, G. Fischer, R. Zielke, J. Svendsen, W. Tillmann, Investigation of PLC band nucleation in AA5754, Mater. Sci. Eng. A 539 (2012) 205–210 [CrossRef] [Google Scholar]
- Y.P. Li, E. Onodera, H. Matsumoto, A. Chiba, Correcting the stress-strain curve in hot compression process to high strain level, Metall. Mater. Trans. A 40 (2009) 982–990 [CrossRef] [Google Scholar]
- J.M. Mistry, P.P. Gohil, Research review of diversified reinforcement on aluminum metal matrix composites: fabrication processes and mechanical characterization, Sci. Eng. Compos. Mater. 25 (2018) 633–647 [CrossRef] [Google Scholar]
- B.V. Ramnath, C. Elanchezhian, R.M. Annamalai, S. Aravind, T.S.A. Atreya, V. Vignesh, C. Subramanian, Aluminium metal matrix composites − a review, Rev. Adv. Mater. Sci. 38 (2014) 55–60 [Google Scholar]
- D. Yadav, R. Bauri, Nickel particle embedded aluminium matrix composite with high ductility. Mater. Lett. 64 (2010) 664–667 [CrossRef] [Google Scholar]
- Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot working guide: a compendium of processing maps, ASM Int. (2015) 1–438 [Google Scholar]
- H.J. McQueen, D.L. Bourell, Hot workability of metals and alloys, J. Mater. 39 (2012) 28–35 [Google Scholar]
- H. Shi, A. Mclaren, A. Sellars, C.M.R. Shahani, R. Bolingbroke, Constitutive equations for high temperature flow stress of aluminium alloys, Mater. Sci. Technol. 13 (1997) 210–216 [CrossRef] [Google Scholar]
- F. Warchomicka, C. Poletti, M. Stockinger, H.P. Degischer, Determination of the mechanism of restoration in subtransus hot deformation of Ti-6Al-4V, Mater. Sci. Forum, 706–709 (2012) 252–257 [CrossRef] [Google Scholar]
- C. Poletti, L. Germain, F. Warchomicka, M. Dikovits, S. Mitsche, Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation, Mater. Sci. Eng. A 651 (2016) 280–290 [CrossRef] [Google Scholar]
- C. Poletti, H. Dieringa, F. Warchomicka, Local deformation and processing maps of as-cast AZ31 alloy, Maters. Sci. Eng. A 516 (2009) 138–147 [CrossRef] [Google Scholar]
- J. Asensio-Lozano, B. Suárez-Peña, G.F. Vander Voort, Effect of processing steps on the mechanical properties and surface appearance of 6063 aluminium extruded products, Materials 7 (2014) 4224–4242 [CrossRef] [Google Scholar]
- B. Leszczynska-Madej, M. Richert, A. Wasik, A. Szafron, Analysis of the microstructure and selected properties of the aluminium alloys used in automotive air-conditioning systems, Metals 8 (2018) 1–15 [Google Scholar]
- G. Vander Voort, B. Suárez-Peña, J. Asensio-Lozano, Microstructure investigations of streak formation in 6063 aluminum extrusions by optical metallographic techniques, Microsc. Microstruct. Anal. 19 (2013) 276–284 [Google Scholar]
- D. Yadav, R. Bauri, Nickel particle embedded aluminium matrix composite with high ductility, Mater. Lett. 64 (2010) 664–667 [CrossRef] [Google Scholar]
- Y.V.R.K. Prasad, T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Mater. Rev. 43 (1998) 243–258 [CrossRef] [Google Scholar]
- T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure, Mater. Sci Eng. A 325 (2002) 112–125 [CrossRef] [Google Scholar]
- E. Evangelista, H.J. Mcqueen, N.D. Ryan, Hot strength, dynamic recovery and dynamic recrystallization of 317 type stainless steel, Metall. Sci. Technol. 5 (1987) 50–58 [Google Scholar]
- P. Wanjara, M. Jahazi, H. Monajati, S. Yue, J.P. Immarigeon, Hot working behavior of near-α alloy IMI834, Mater. Sci. Eng. A 396 (2005) 50–60 [CrossRef] [Google Scholar]
- Y. Duan, P. Li, K. Xue, Q. Zhang, X. Wang, Flow behaviour and microstructure evolution of TB8 alloy during hot deformation process, Trans. Nonferrous Met. Soc. China 17 (2007) 1199–1204 [CrossRef] [Google Scholar]
- J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, J.S. Li, Hot deformation mechanism and microstructure evolution of a new near β titanium alloy, Mater. Sci. Eng. A 584 (2013) 121–132 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.