Open Access
Manufacturing Rev.
Volume 8, 2021
Article Number 13
Number of page(s) 18
Published online 27 April 2021
  1. S. Narana Rao, B.S. Satyanarayana, Experimental estimation of tool wear and cutting temperatures in MQL using cutting fluids with CNT inclusion, Int. J. Ind. Eng. Sci. Technol. (2011) [Google Scholar]
  2. H. Suhil Adheil, N. Ismail, Optimization of cutting parameters of turning operations by using geometric programming, Am. J. Eng. Appl. Sci. 3 (2010) 102–108 [Google Scholar]
  3. N.R. Dhar, M. Kamruzzaman, M. Ahmed, Effect of minimum quantity lubrication on tool wear and surface roughness in turning AISI 4340 steel, J. Mater. Process. Technol. 172 (2006) 299–304 [CrossRef] [Google Scholar]
  4. N.R. Dhar, S. Islam, M. Kamruzzaman, Effect of minimum quantity lubrication on tool wear, surface roughness and dimensional deviation in turning AISI-4340 Steel, G. U. J. Sci. 20 (2007) 23–32 [Google Scholar]
  5. B. Tasdelen, H. Thordenberg, D. Olofsson, An experimental investigation on contact length during MQL machining, J. Mater. Process. Technol. 203 (2008) 221–231 [Google Scholar]
  6. S. Bin, A.J. Shih, S.C. Tung, Application of nano fluids in minimum quantity lubrication grinding, J. Tribol. Lubr. Technol. 51 (2009) 730–737 [Google Scholar]
  7. H. Huang, Y.C. Liu, Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding, Int. J. Mach. Tools Manuf. 43 (2003) 811–823 [Google Scholar]
  8. G. Mauvoisin, O. Bartier, R.E. Abdi, A. Nayebi, Influence of material properties on the drilling thrust to hardness ratio, Int. J. Mach. Tools Manuf. 43 (2003) 825–832 [Google Scholar]
  9. J. Xie, M.J. Luo, K.K. Wu, L.F. Yang, D.H. Li, Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool, Int. J. Mach. Tools Manuf. 73 (2013) 25–36 [CrossRef] [Google Scholar]
  10. A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, D. Larrouquere, Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools, J. Wear 262 (2007) 931–942 [Google Scholar]
  11. K.-M. Li, S.Y. Liang, Modeling of cutting forces in near dry machining under tool wear effect, Int. J. Mach. Tools Manuf. (2007) 1292–1301 [Google Scholar]
  12. P.S. Sripathi, Investigation into the effects of tool geometry and metal working fluids on tool forces and tool surfaces during orthogonal tube turning of aluminum 6061 alloy. M.S. thesis submitted to Auburn University, Alabama, December 18, (2009) [Google Scholar]
  13. M. Nalbant, H. Gokkaya, G. Sur, Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, J. Mater. Des. 28 (2013) 1379–1385 [Google Scholar]
  14. I.S. Jawahir, E. Brinksmeier, R.M. Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, A.D. Jayal, Surface integrity in material removal processes: recent advances, CIRP Ann.- Manuf. Technol. 60 (2011) 603–626 [Google Scholar]
  15. S.A. Lawal, I.A. Choudhury, Y. Nukman, A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant, J. Clean. Prod. 41 (2013) 210–221 [CrossRef] [Google Scholar]
  16. S. Varun, P.M. Pandey, Comparative study of turning of 4340 hardened steel with hybrid textured self lubricating cutting inserts, Mater. Manuf. Process. (2015) [Google Scholar]
  17. P. Alokesh, G. Little fair, Machining of titanium alloy (Ti-6al-4v) theory to application, J. Mach. Sci. Technol. 19 (2015) 1–49 [Google Scholar]
  18. S.A. Kumar, S. Bidyadhar, Experimental investigation on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts, Measurement 45 (2012) 2153–2165 [CrossRef] [Google Scholar]
  19. D. Zhu, X. Zhang, H. Ding, Tool wear characteristics in machining of nickel-based super alloys, Int. J. Mach. Tools Manuf. 64 (2013) 60–77 [Google Scholar]
  20. S. Debnath, M.M. Reddy, Q.S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: a review, J. Clean. Prod. 83 (2014) 33–47 [Google Scholar]
  21. K. Simunovic, G. Simunovic, T. Saric, Single and multiple goal optimization of structural steel face milling process considering different methods of cooling/lubricating, J. Clean. Prod. 94 (2015) 321–329 [Google Scholar]
  22. J.F. Kelly, M.G. Cotterell, Minimal lubrication machining of aluminum alloys, J. Mater. Process. Technol. 120 (2002) 337–334 [Google Scholar]
  23. M.M.A. Khan, M.A.H. Mithua, N.R. Dharb, Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil based cutting fluid, J. Mater. Process. Technol. 209 (2009) 5573–5583 [CrossRef] [Google Scholar]
  24. S. Sharma Vishal, D. Manu, N.M. Suri, Cooling techniques for improved productivity in turning, J. Mater. Process. Technol. 49 (2009) 435–453 [Google Scholar]
  25. T. Obikwa, Y. Asano, Y. Kamata, Computer fluid dynamics analysis for efficient spraying of oil mist in finish-turning of Inconel 718, Int. J. Mach. Tools Manuf. 49 (2009) 970–978 [Google Scholar]
  26. Md.A. Hasib, A. Al-farukh, N. Ahmed, Mist application of cutting fluid, Int. J. Mech. Mechatron. Eng. 10 (2010) 10–11 [Google Scholar]
  27. K.Y. Hwang, C.I. Lee, Surface roughness and cutting force prediction in MQL and wet turning process of ASSI 1045 using design of experiments, Int. J. Mech. Sci. Technol. 24 (2010) 1669–1676 [Google Scholar]
  28. C.M. Huseyin, B. Ozcelik, E. Kurama, E. Demirbas, Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method, J. Clean. Prod. 19 (2011) 2049–2056 [Google Scholar]
  29. Y. Kaynak, H.E. Karac, R.D. Noeb, I.S. Jawahir, Tool-wear analysis in cryogenic machining of NITI shape memory alloys: a comparison of tool-wear performance with dry and MQL machining, J. Wear 306 (2013) 51–63 [Google Scholar]
  30. S.M. Yuan, L.T. Yuan, W.D. Liu, Effect of cooling air temperature on cryogenic machining of Ti-6Al-4V alloy, J. Mater. Process. Technol. 211 (2011) 356–362 [Google Scholar]
  31. L.M. Barczak, A.D. Batako, Application of minimum quantity lubrication in grinding, J. Mater. Manuf. Process. 27 (2012) 406–411 [Google Scholar]
  32. P. Zeilmann Rodrigo, G.L. Nicola, T. Vacaro, C.R. Teixeira, R. Heiler, Implications of the reduction of cutting fluid in drilling AISIP20 steel with carbide tools, Int. J. Adv. Manuf. Technol. 58 (2012) 431–441 [Google Scholar]
  33. H. Patil Deepak Kumar, Investigation on finish turning of AISI 4340 steel in different cutting environments by CBN insert, Int. J. Eng. Sci. Technol. 10 (2011) [Google Scholar]
  34. A.S.S. Balan, L. Vijayaraghavan, R. Krishnamurthy, Minimum quantity lubricated grinding of Inconel 751 alloy, J. Mater. Manuf. Process. 28 (2013) 430–435 [Google Scholar]
  35. C. Nath, S.G. Kapoor, A.K. Srivastav, Effect of fluid concentration in titanium machining with an Atomization-Based Cutting Fluid (ACF) spray system, Int. J. Manuf. Process. 15 (2013) 419–425 [Google Scholar]
  36. M. Cong, H. Zou, Y. Huang, Y. Li, Z. Zhou, Analysis of heat transfer coefficient on workpiece surface during minimum quantity lubricant grinding, Int. J. Adv. Manuf. Technol. 66 (2013) 363–370 [Google Scholar]
  37. C.S. Rakurty, P.I. Varela, A.K. Balaji, Effects of targeted minimum quantity fluid application on surface integrity, Procedia CIRP 8 (2013) 462–468 [Google Scholar]
  38. S.A. Lawal, I. Choudhury, A.Y. Nukman, Application of vegetable oil-based metal working fluids in machining ferrous metals, Int. J. Mach. Tools Manuf. 52 (2012) 1–12 [Google Scholar]
  39. T. Minton, S. Ghani, F. Sammler, R. Bateman, P. Fürstmann, M. Roeder, Temperature of internally-cooled diamond-coated tools for dry-cutting titanium, Int. J. Mach. Tools Manuf. 75 (2013) 27–35 [CrossRef] [Google Scholar]
  40. S.K. Komini, K.S. Praveen, B. Raja, P. Damodharan, Measurement of thermal conductivity of fluid using single and dual wire transient techniques, J. Meas. 46 (2013) 2746–2752 [Google Scholar]
  41. Md A. Imran, B. Kotiveerachary, Study of the effect of minimum quantity lubrication on surface roughness of Incoloy 800 during turning operation, Int. J. Curr. Eng. Technol. (2013) 439–448. [Google Scholar]
  42. S. Dinesh, M.K. Sinha, S. Ghosh, P. Venkateswara Rao, An effective method to determine the optimum parameters for minimum quantity lubrication grinding, In: 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12th–14th, 2014, IIT Guwahati, Assam, India , 2014 [Google Scholar]
  43. P.C. Priarone, M. Robiglio, L. Settineri, V. Tebaldo, Milling and turning of titanium aluminides by using minimum quantity lubrication, Procedia CIRP 24 (2014) 62–67 [Google Scholar]
  44. W. Sheng, C. Li, D. Zhang, D. Jia, Y. Zhang, Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication, Int. J. Adv. Manuf. Technol. (2014) [Google Scholar]
  45. D.A. Stephenson, S.J. Skerlos, A.S. King, Rough turning Inconel 750 with supercritical Co2- based minimum quantity lubrication, J. Mater. Process. Technol. 214 (2014) 673–680 [Google Scholar]
  46. N. Banerjee, A. Sharma, Identification of a friction model for minimum quantity lubrication machining, J. Clean. Prod. 83 (2014) 437–443 [Google Scholar]
  47. G. Rotella, O.W. Dillon, D. Umbrell, L. Settineri, I.S. Jawahir, The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy, Int. J. Adv. Manuf. Technol. 71 (2014) 47–55 [Google Scholar]
  48. S. Amini, H. Khakbaz, A. Barani, Improvement of near-dry machining and it's effect on tool wear in turning of AISI 4142, J. Mater. Manuf. Process. 30 (2015) 241–247 [Google Scholar]
  49. F. Domnita, Numerical and experimental approach of cutting temperatures to green turning of 42CrMo4 steel, J. Mater. Manuf. Process. (2015) [Google Scholar]
  50. M.K. Gupta, P.K. Sood, S. Sharma Vishal, Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum quantity lubrication environment, J. Mater. Manuf. Process. (2015) [Google Scholar]
  51. A.D.L. Batako, V. Tsiakoumis, An experimental investigation into resonance dry grinding of hardened steel and nickel alloys with element of MQL, Int. J. Adv. Manuf. Technol. 77 (2015) 1–4 [Google Scholar]
  52. Chetan, S. Ghosh, P.V. Rao, Application of sustainable techniques in metal cutting for enhanced machinability: a review, J. Clean. Prod. 100 (2015) 17–34 [Google Scholar]
  53. M. Sarıkaya, A. Güllü, Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25, J. Clean. Prod. 91 (2015) 347–357 [Google Scholar]
  54. H. Hamed, M.H. Sadeghi, H. Rezaei, A. Rasti, Experimental study of cutting force, microhardness, surface roughness, and burr size on micro milling of Ti6Al4V in minimum quantity lubrication, J. Mater. Manuf. Process. (2016) [Google Scholar]
  55. N. Verma, K. Manoj Kumar, A. Ghosh, Characteristics of aerosol produced by an internal-mix nozzle and its influence on force, residual stress and surface finish in SQCL grinding, J. Mater. Process. Technol. 240 (2017) 223–232 [Google Scholar]
  56. R. Kumar, A. Kumar, S.R. Kumar, D. Amlana, P. Purna, C. Mishra, Modelling of flank wear, surface roughness and cutting temperature in sustainable hard turning of AISID2 steel, Procedia Manuf. 20 (2018) 406–413 [Google Scholar]
  57. M. Yacoub, A. Shdaifat, R. Zulkifli, K. Sopian, A.A. Salih, Thermal and hydraulic performance of CuO/water nanofluids: a review, Micromachines 11 (2020) 416 [Google Scholar]
  58. U. Gunjal Shrikant, G. Patil Nilesh, Experimental investigations into turning of hardened AISI 4340 steel using vegetable based cutting fluids under minimum quantity lubrication, Procedia Manuf. 20 (2018) 18–23 [Google Scholar]
  59. G.M. Krolczyk, R.W. Marudaz, J.B. Krolczyk, S. Wojciechowski, M. Mia, P. Nieslony, G. Budzik, Ecological trends in machining as a key factor in sustainable production: a review, J. Clean. Prod. 218 (2019) 601–615 [Google Scholar]
  60. R. Heinemann, S. Hinduja, G. Barrow, G. Petuelli, Effect of MQL on the tool life of small twist drills in deep-hole drilling, Int. J. Mach. Tools Manuf. 46 (2006) 1–6 [Google Scholar]
  61. A.L. Shakeel, M. Pradeep Kumar, Cryogenic drilling of Ti–6Al–4V alloy under liquid nitrogen cooling, J. Mater. Manuf. Process. (2015) 1–9 [Google Scholar]
  62. G. Akhil, S. Sarma, B.N. Panda, J. Zhang, L. Gao, Study of effect of nano fluid concentration on response characteristics of machining process for cleaner production, J. Clean. Prod. 135 (2016) 476–489 [Google Scholar]
  63. C.S. Singh, A. Pal, T. Singh, Performance evaluation of aluminium 6063 drilling under the influence of nano fluid minimum quantity lubrication, J. Clean. Prod. 137 (2016) 537–545 [Google Scholar]
  64. S. Prabhu, B.K. Vinayagam, Fractal dimensional surface analysis of AISID2 tool steel material with nano fluids in grinding process using atomic force microscopy, J. Braz. Soc. Mech. Sci. Eng. 4 (2011) 466 [Google Scholar]
  65. S. Gopalakannan, T. Senthilvelan, Application of response surface method on machining of Al-Sic nano-composites, J. Meas. 46 (2013) 2705–2715 [Google Scholar]
  66. M. Cong, Y. Huang, X. Zhou, H. Gan, J. Zhang, Z. Zhou, The tribological properties of nanofluid used in minimum quantity lubrication grinding, Int. J. Adv. Manuf. Technol. 71 (2014) 1221–1228 [Google Scholar]
  67. Z. Dongkun, C. Li, Y. Zhang, D. Jia, X. Zhang, Experimental research on the energy ratio coefficient and specific grinding energy in nano particle jet MQL grinding, Int. J. Adv. Manuf. Technol. 78 (2015) 1275–1288 [Google Scholar]
  68. Y. Min, C. Li, Y. Zhang, Y. Wang, B. Li, Y. Hou, Experimental research on micro scale grinding temperature under different nano particle jet minimum quantity cooling, J. Mater. Manuf. Process. (2016) [Google Scholar]
  69. A.D. Sarhan Ahmed, M. Sayuti, M. Hamdi, Reduction of power and lubricant oil consumption in milling process using a New SiO2 nano lubrication system, Int. J. Adv. Manuf. Technol. 63 (2012) 505–512 [Google Scholar]
  70. M. Sayuti, A.A.D. Sarhan, M. Hamdi, An investigation of optimum SiO2 nano lubrication parameters in end milling of aerospace Al6061-T6 alloy, Int. J. Adv. Manuf. Technol. 67 (2013) 833–849 [Google Scholar]
  71. M. Sayuti, A.A.D. Sarhan, T. Tanaka, M. Hamdi, Y. Saito, Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nano lubrication system, Int. J. Adv. Manuf. Technol. 65 (2013) 1493–1500 [Google Scholar]
  72. M. Sayuti, A.A.D. Sarhan, F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption, J. Clean. Prod. 67 (2014) 265–276 [Google Scholar]
  73. M.E. Ooi, M. Sayuti, A.A.D. Sarhan, Fuzzy logic-based approach to investigate the novel uses of nano suspended lubrication in precise machining of aerospace AL tempered grade 6061, J. Clean. Prod. (2014) 1–10 [Google Scholar]
  74. M.Q. Pham, H.S. Yoon, V. Khare, S.H. Ahn, Evaluation of ionic liquids as lubricants in micro milling-process capability and sustainability, J. Clean. Prod. 76 (2014) 167–173 [Google Scholar]
  75. R. Bizhan, A.A.D. Sarhan, M. Sayuti, Investigating the optimum molybdenum disulfide (Mos2) nanolubrication parameters in CNC milling of AL6061-T6 alloy, Int. J. Adv. Manuf. Technol. 70 (2014) 1143–1155 [Google Scholar]
  76. R. Saidura, K.Y. Leongb, H.A. Mohammadc, A review on applications and challenges of nanofluids, Renew. Sustain. Energy Rev. 15 (2011) 1646–1668 [Google Scholar]
  77. C.Y. Chan, W.B. Lee, H. Wang, Enhancement of surface finish using water-miscible nano-cutting fluid in ultra-precision turning, Int. J. Mach. Tools Manuf. 73 (2013) 62–70 [Google Scholar]
  78. S. Roy, A. Ghosh, High speed turning of AISI 4140 steel using nano fluid through twin jet SQL system. In: ASME International Manufacturing Science and Engineering Conference , pp. 10–14, 2013 [Google Scholar]
  79. M. Amrita, S.A. Shariqa, Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process, Procedia Eng. 97 (Experimental Investigation on Application of Emulsifier Oil based Nano Cutting Fluids in Metal Cutting Process (2014) 115–124 [Google Scholar]
  80. M. Sayuti, A.A.D. Sarhan, F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI 4140 for less tool wear, surface roughness and oil consumption, J. Clean. Prod. 67 (2014) 265–276 [Google Scholar]
  81. A. Saini, S. Dhiman, R. Sharma, S. Setia, Experimental estimation and optimization of process parameters under minimum quantity lubrication and dry turning of AISI-4340 with different carbide inserts, J. Mech. Sci. Technol. 28 (2014) 2307–2318 [Google Scholar]
  82. P. Krajnik, A. Rashid, F. Pu_savec, M. Remskar, A. Yui, N. Nikkam, M.S. Toprak, Transitioning to sustainable production-part III: developments and possibilities for integration of nanotechnology into material processing technologies, J. Clean. Prod. 112 (2016) 1156–1164 [Google Scholar]
  83. H. Hegab, U. Umer, I. Deiab, H. Kishawy, Performance evaluation of Ti-6Al-4V machining using nano-cutting fluids under minimum quantity lubrication, Int. J. Adv. Manuf. Technol. 95 (2018) 4229–4241 [Google Scholar]
  84. D. Anshuman, P.S. Kumar, D.S. Ranjan, Performance comparison of vegetable oil based nanofluids towards machinability improvement in hard turning of HSLA steel using minimum quantity lubrication, Mech. Ind. 20 (2019) 506 [CrossRef] [Google Scholar]
  85. N. Mahammad, M. Agrawal Sachin, P. Nilesh, The effect of karanja based soluble cutting fluid on chips formation in orthogonal cutting process of AISI 1045 steel, Procedia Manuf. 20 (2020) 12–17 [Google Scholar]
  86. A.S. Varadarajan, P.K. Philip, B. Ramamoorthy, Investigations on Hard Turning with Minimal Cutting Fluid Application (HTMF) and it's comparison with dry and wet turning, Int. J. Mach. Tools Manuf. 42 (2002) 193–200 [Google Scholar]
  87. A.N.M. Khalila, M.A. Alib, A.I. Azmic, Effect of Al2O3 nano lubricant with SDBS on tool wear during turning process of AISI 1050 with minimal quantity lubricant. In: 2nd International Materials, Industrial, and Manufacturing Engineering Conference, MIMEC2015 , 4–6 February 2015, Bali Indonesia [Google Scholar]
  88. M.A.M. Ali, A.N.M. Khalil, A.I. Azmi, H.M. Salleh, Optimization of cutting parameters for surface roughness under MQL, using Al2O3 nano lubricant, during turning of Inconel 718, IOP Conf. Ser. Mater. Sci. Eng. 226 (2017) 1–7 [Google Scholar]
  89. Y. Muthusamy, K. Kadirgama, M.M. Rahman, D. Ramasamy, K.V. Sharma, Wear Analysis when machining AISI 304 with ethylene glycol/TIO2 nano particle-based coolant, Int. J. Adv. Manuf. Technol. 82 (2016) 327–340 [Google Scholar]
  90. K. Kadirgama, K. Anamalai, K. Ramachandran, D. Ramasamy, M. Samykano, A. Kottasamy, S. Lingenthiran, M.M. Rahman, Thermal analysis of SUS 304 stainless steel using ethylene glycol/nano cellulose-based nanofluid coolant, Int. J. Adv. Manuf. Technol. (2018) [Google Scholar]
  91. T. Tawakoli, M.J. Hadad, M.H. Sadeghi, Influence of oil mist parameters on minimum quantity lubrication-MQL grinding process, Int. J. Mach. Tools Manuf. 50 (2010) 521–531 [CrossRef] [Google Scholar]
  92. M. Emami, M.H. Sadeghi, A.A.D. Sarhan, Investigating the effects of liquid atomization and delivery parameters of minimum quantity lubrication on the grinding process of Al2O3 engineering ceramics, J. Manuf. Process. 15 (2013) 374–388 [CrossRef] [Google Scholar]
  93. P.B. Patole, V.V. Kulkarni, Experimental investigation and optimization of cutting parameters with multi response characteristics in MQL turning of AISI 4340 using nano fluid, J. Cogent Eng. 4 (2017) 1–14 [Google Scholar]
  94. P.B. Patole, V.V. Kulkarni, Optimization of process parameters based on surface roughness and cutting force in MQL turning of AISI 4340 using nano fluid − PMME 2016, J. Mater. Today Proc. 5 (2018) 104–112 [Google Scholar]
  95. P.B. Patole, V.V. Kulkarni, Parametric optimization of minimum quantity lubrication in turning of AISI 4340 using nano fluids, J. Mater. Today Proc. 5 (2018) 12419–12425 [Google Scholar]
  96. P.B. Patole, V.V. Kulkarni, Prediction of surface roughness and cutting force under MQL turning of AISI 4340 with nano fluid by using response surface methodology, J. Manuf. Rev. 5 (2018) 5 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.