Open Access
Review
Issue
Manufacturing Rev.
Volume 8, 2021
Article Number 14
Number of page(s) 17
DOI https://doi.org/10.1051/mfreview/2021012
Published online 29 April 2021
  1. M. Schmid, K. Wegener, Additive manufacturing: polymers applicable for laser sintering (LS), Procedia Eng. 149 (2016) 457–464 [Google Scholar]
  2. U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, The role of additive manufacturing in the era of industry 4.0, Procedia Manuf. 11 (2017) 545–554 [Google Scholar]
  3. D. Drummer, S. Greiner, M. Zhao, K Wudy, A novel approach for understanding laser sintering of polymers, Addit. Manuf. 27 (2019) 379–388 [Google Scholar]
  4. H. Zhang, S. LeBlanc, Processing Parameters for Selective Laser Sintering or Melting of Oxide Ceramics. In: Additive Manufacturing of High-performance Metals and Alloys-Modeling and Optimization. Intech Open, 2018, vol. 10 1–44 [Google Scholar]
  5. A. Amado, M. Schmid, G. Levy, K. Wegener, Advances in SLS powder characterization. 7 (2017) 12–25 [Google Scholar]
  6. Y. Yamauchi, T. Niino, T. Kigure, Influence of process time and geometry on part quality of low-temperature laser sintering. Paper presented at the 2017 International Solid Freeform Fabrication Symposium on Additive Manufacturing, Austin, Texas, 7–9 August 2017 [Google Scholar]
  7. P. Mägi, A. Krumme, M. Pohlak, Material recycling and improvement issues in additive manufacturing. Paper presented at the 10th International DAAAM Baltic Conference on Industrial Engineering, Tallinn, Estonia, 12–13 May 2015 [Google Scholar]
  8. R.D. Goodridge, C.J. Tuck, R.J.M. Hague Laser sintering of polyamides and other polymers, Prog. Mater. Sci. 57 (2012) 229–267 [Google Scholar]
  9. D. Drummer, K. Wudy, M. Drexler, Influence of energy input on the degradation behavior of plastic components manufactured by selective laser melting, Phys. Procedia 56 (2014) 176–183 [Google Scholar]
  10. J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, M.A. Peltz, Characterization of metal powders used for additive manufacturing, J. Res. Natl. Inst. Stand. Technol. 119 (2016) 460–475 [Google Scholar]
  11. M. Saffarzadeh, G.J. Gillispie, P. Brown, Selective laser sintering (SLS), rapid prototyping technology, a review of medical applications. 1 (2016) 1–21 [Google Scholar]
  12. A. Nazarov, I. Skornyakov, I. Shishkovsky, The setup design for selective laser sintering of high-temperature polymer materials with the alignment control system of layer deposition, Machines 6 (2015) 1–11 [Google Scholar]
  13. T.M. Marin, Selective laser sintering of polyolefins. Master's thesis, Tampere University of Technology, 2017 [Google Scholar]
  14. K. Wudy, D. Drummer, M. Drexler, Characterization of polymer materials and powders for selective laser melting. Paper presented at the 4th International Conference on Mathematics and Natural Sciences, Rhodes, Greece, 22–28 September 2014 [Google Scholar]
  15. D.T. Pham, K.D. Dotchev, W.A.Y. Yusoff, Deterioration of polyamide powder properties in the laser sintering process. J. Mech. Eng. Sci. 222 (2008) 2163–2176 [Google Scholar]
  16. M.B. Sagar, K. Elangovan, Consolidation & factors influencing sintering process in polymer powder based additive manufacturing. Paper presented at the IOP Conference Series: Materials Science and Engineering on Alloys and Experimental Mechanics, Narsimha Reddy Engineering College, India, 3–4 July 2017 [Google Scholar]
  17. M. Schmid, A. Amado, K. Wegener, Polymer powders for selective laser sintering (SLS). Paper presented at the 30th International Conference of the Polymer Processing, Cleveland, Ohio, USA, 6–12 June 2015 [Google Scholar]
  18. N. Mys, A. Verberckmoes, L. Cardon, Expanding the material palette for Selective Laser Sintering: two production techniques for spherical powders. Paper presented at the International Conference on Polymers and Moulds Innovations-PMI on Additive Manufacturing, Institute of Education, University of Minho, Portugal, 19–21 September 2018 [Google Scholar]
  19. A.T. Sutton, C.S. Kriewall, M.C. Leu, J.W. Newkirk, Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes, Virtual Phys. Prototy. 12 (2017) 3–29 [Google Scholar]
  20. S. Berretta, O. Ghita, K.E. Evans, A. Anderson, C. Newman, Size, shape and flow of powders for use in Selective Laser Sintering (SLS). In: High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping 49 (2013) 1–7 [Google Scholar]
  21. M. Schmid, K. Wegener, Thermal and molecular properties of polymer powders for Selective Laser Sintering (SLS). Paper presented at the AIP Conference Proceedings on Polymer Processing Society, Graz, Austria, 21–25 September 2015 [Google Scholar]
  22. D. Drummer, D. Rietzel, F. Kühnlein, Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering, Phys. Procedia 5 (2010) 533–542 [Google Scholar]
  23. G.M. Craft, Characterization of nylon-12 in a novel additive manufacturing technology, and the rheological and spectroscopic analysis of PEG-starch matrix interactions. Dissertation, University of South Florida (2018) [Google Scholar]
  24. Y. Khalil, N. Hopkinson, A. Kowalski, J.P.A. Fairclough, Characterisation of UHMWPE polymer powder for laser sintering, Materials 12 (2019) 3496–3516 [Google Scholar]
  25. S. Tamari, A. Aguilar-Chavez, Optimum design of gas pycnometers for determining the volume of solid particles, J. Test. Eval. 33 (2005) 1–5 [Google Scholar]
  26. J. Bodycomb, Laser Diffraction Theory When a Light beam Strikes a Particle (Horiba, Kyoto, 2012) [Google Scholar]
  27. G. Eshel, G.J. Levy, U. Mingelgrin, M.J. Singer, Critical evaluation of the use of laser diffraction for particle-size distribution analysis, Soil Sci. Soc. Am. J. 68 (2004) 737–743 [Google Scholar]
  28. J.A. Seyforth, Scanning Electron Microscopy (SEM). An introduction to the use of SEM for characterizing the surface topology and composition of matter with further applications Scanning Electron Microscopy (SEM), Exp. Tech. Condens. Matter Phys. 2 (2015) 13–27 [Google Scholar]
  29. W. Zhou, R. Apkarian, Z.L. Wang, D. Joy, Fundamentals of Scanning Electron Microscopy (SEM), In: Scanning Microscopy for Nanotechnology: Techniques and Applications, 2007, vol. 1, 1–40 [Google Scholar]
  30. S. Berretta, O. Ghita, K.E. Evans, Morphology of polymeric powders in Laser Sintering (LS): from polyamide to new PEEK powders, Eur. Polym. J. 59 (2014) 218–229 [CrossRef] [Google Scholar]
  31. O.P. Choudhary, P. Choudhary, Scanning electron microscope: advantages and disadvantages in imaging components, Int. J. Curr. Microbiol. Appl. Sci. 6 (2017) 1877–1882 [Google Scholar]
  32. C. Schick, Differential scanning calorimetry (DSC) of semi-crystalline polymers, Anal. Bioanal. Chem. 395 (2009) 1589–1611 [Google Scholar]
  33. J. Janečková (n.d.) Thermal analysis techniques. Retrieved from https://slideplayer.com/slide/16978195/ (Accessed on 24 Jan 2020) [Google Scholar]
  34. A. Askadskiĭ, Computational Materials Science of Polymers. (Great Abington, Cambridge, 2003) [Google Scholar]
  35. International Association of Plastics Distribution. (n.d.) International Association of Plastics Distribution − Typical Properties of Polypropylene. Retrieved from http://www.sdplastics.com/pdf/pp.pdf (Accessed on 24 Jan 2020) [Google Scholar]
  36. F.M. Mwania, M. Maringa, J.G. van der Walt, A review of methods used to reduce the effects of high temperature associated with polyamide 12 and polypropylene laser sintering, Adv. Polym. Technol. 2020 (2020) 1–11 [Google Scholar]
  37. K. Dotchev, W. Yusoff, Recycling of polyamide 12 based powders in the laser sintering process, Rapid Prototyp. J. 15 (2009) 192–203 [Google Scholar]
  38. S. Rüsenberg, R. Weiffen, F. Knoop, H.J. Schmid, M. Gessler, H. Pfisterer, Controlling the quality of laser sintered parts along the process chain. Paper presented at the 23rd International Solid Freeform Fabrication Symposium (SFF 2012) on Additive Manufacturing, University of Texas at Austin, USA, 3–6 August 2012 [Google Scholar]
  39. S. Dadbakhsh, L. Verbelen, O. Verkinderen, D. Strobbe, P. Van Puyvelde, J.P. Kruth, Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts, Eur. Polym. J. 92 (2017) 250–262 [CrossRef] [Google Scholar]
  40. S. Park, J.W. Hwang, K.N. Kim, G.S. Lee, J.H. Nam, Rheology and curing characteristics of dual-curable clearcoats with hydroxyl functionalized urethane methacrylate oligomer: effect of blocked isocyanate thermal crosslinkers Rheology and curing characteristics of dual-curable clearcoats with hydroxyl functionalized urethane methacrylate oligomer: Effect of blocked isocyanate thermal crosslinkers, Korea Aust. Rheol. J. 26 (2014) 159–167 [Google Scholar]
  41. K. Wudy, D. Drummer, Aging behavior of polyamide 12: interrelation between bulk characteristics and part properties. Paper presented at the Solid Freeform Fabrication Symposium on Additive Manufacturing, University of Texas at Austin, USA, 7–10 August 2016 [Google Scholar]
  42. M. Schmid, F. Amado, G. Levy, K. Wegener, Flowability of powders for selective laser sintering (SLS) investigated by round robin test. Paper Presented in High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, pp. 1–5, 2013 [Google Scholar]
  43. T. Laumer, T. Stichel, K. Nagulin, M. Schmidt, Optical analysis of polymer powder materials for selective laser sintering, Polym. Test. 56 (2016) 207–213 [Google Scholar]
  44. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing, Chem. Rev. 117 (2017) 10212–10290 [Google Scholar]
  45. O.R. Ghita, E. James, R. Trimble, K.E. Evans, Physico-chemical behaviour of poly (ether ketone) (PEK) in high temperature laser sintering (HT-LS), J. Mater. Process. Technol. 214 (2014) 969–978 [Google Scholar]
  46. F.M. Mwania, M. Maringa, J.G. van der Walt, Powder characterization for a new selective laser sintering polypropylene material (Laser PP CP 60) after single print cycle degradation, Int. J. Eng. Res. Technol. 13 (2020) 3342–3358 [Google Scholar]
  47. S. Rüsenberg, S. Josupeit, H.J. Schmid, A method to characterize the quality of a polymer laser sintering process, Adv. Mech. Eng. 6 (2014) 74–87 [Google Scholar]
  48. T.J. Gornet, K.R. Davis, T.L. Starr, K.M. Mulloy, Characterization of selective laser sintering materials to determine process stability. Paper presented in Solid Freeform Fabrication Symposium, Austin 1 (2002) 546–553 [Google Scholar]
  49. R.G. Kleijnen, M. Schmid, K. Wegener, Production and processing of a spherical polybutylene terephthalate powder for laser sintering, Appl. Sci. 9 (2019) 1308–1329 [Google Scholar]
  50. S. Aldahsh, Dependence of SLS parameters on thermal properties of composite material of cement with polyamide 12, J. Appl. Mech. Eng. 2 (2013) 1–7 [Google Scholar]
  51. A. Wegner, T. Ünlü, Powder life cycle analyses for a new polypropylene laser sintering material. Paper presented at the 27th Annual International Solid Freeform Fabrication Symposium on Additive Manufacturing, 27, 834–846, 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.