Open Access
Issue
Manufacturing Rev.
Volume 8, 2021
Article Number 18
Number of page(s) 14
DOI https://doi.org/10.1051/mfreview/2021016
Published online 28 June 2021
  1. A. Lefeuvre, S. Garnier, L. Jacquemin, B. Pillain, G. Sonnemann, Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until2050, Resour. Conserv. Recycl. 125 (2017) 264–272 [Google Scholar]
  2. J. Zhang, V.S. Chevali, H. Wang, C.H. Wang, Current status of carbon fibre and carbon fibre composites recycling, Compos. B. Eng. 193 (2020) 108053 [Google Scholar]
  3. K. Wong, C. Rudd, S. Pickering, L. Xiaoling, Composites recycling solutions for the aviation industry, Sci. China Technol. Sci. 60 (2017) 1291–1300 [Google Scholar]
  4. N. Vijay, V. Rajkumara, P. Bhattacharjee, Assessment of Composite Waste Disposal in Aerospace Industries, Procedia Environ. Sci. 35 (2016) 563–570 [Google Scholar]
  5. S. Halliwell, End of Life Options for Composite Waste Recycle, Reuse or Dispose? National Composites Network Best Practice Guide, National Composites Network (2006). Retrieved from https://compositesuk.co.uk/system/files/documents/endoflifeoptions.pdf [Google Scholar]
  6. A. Jacob, Composites can be recycled, Reinforced Plastics 55 (2011) 45–46 [Google Scholar]
  7. G. Oliveux, L.O. Dandy, G.A. Leeke, Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties, Prog. Mater. Sci. 72 (2015) 61–99 [Google Scholar]
  8. S.K. Gopalraj, T. Kärki, A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis, SN Appl. Sci. 2 (2020) 433 [Google Scholar]
  9. A.A. van Oudheusden, Recycling of composite materials, Delft University of Technology Report, 2019 [Google Scholar]
  10. M.C.S. Ribeiro, A. Fiúza, A. Ferreira, M.D.L. Dinis, A.C. Meira Castro, J.P. Meixedo, M.R. Alvim, Recycling approach towards sustainability advance of composite materials' industry, Recycling 1 (2016) 178–193 [Google Scholar]
  11. Y. Yang, R. Boom, B. Irion, D.J. van Heerden, P. Kuiper, H. de Wit, Recycling of composite materials, Chem. Eng. Process. 51 (2012) 53–68 [Google Scholar]
  12. S. Job, G. Leeke, P.T. Mativenga, G. Oliveux, S.J. Pickering, N.A. Shuaib, Composites recycling; Where are we now? 2016. Retrieved from https://compositesuk.co.uk/system/files/documents/RecyclingReport2016_1.pdf [Google Scholar]
  13. F. Meng, Y. Cui, S. Pickering, J. McKechnie, From aviation to aviation: Environmental and financial viability of closed-loop recycling of carbon fibre composite, Compos. B. Eng. 200 (2020) 108362 [Google Scholar]
  14. E. Lester, S. Kingman, K.H. Wong, C. Rudd, S. Pickering, N. Hilal, Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study, Mater. Res. Bull. 39, (2004) 1549–1556 [Google Scholar]
  15. K. Obunai, T. Fukuta, K. Ozaki, Carbon fiber extraction from waste CFRP by microwave irradiation, Compos. Part A Appl. Sci. Manuf. 78 (2015) 160–165 [Google Scholar]
  16. The International Standards Organisation, Environmental Management—Life Cycle Assessment—Principles and Framework; ISO 14040; The International Standards Organisation, Geneva, Switzerland, 2006 [Google Scholar]
  17. W.J. Fabrycky, B.S. Blanchard, Life-cycle cost and economic analysis, 1st edn, Prentice Hall International Series in Industrial and Systems Engineering, NJ, USA, (1991) [Google Scholar]
  18. T.F. Stocker et al., IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013 [Google Scholar]
  19. X. Li, R. Bai, J. McKechnie, Environmental and financial performance of mechanical recycling of carbon fibre reinforced polymers and comparison with conventional disposal routes, J. Clean. Prod. 127 (2016) 451–460 [Google Scholar]
  20. B. Pillain, A. Lefeuvre, S. Garnier, A.L. Cadène, L. Jacquemin, Sustainability engineering assessment research for recycling composites with high value: Stakeholders' views, Sustain. Dev. 28 (2020) 197–207 [Google Scholar]
  21. A.O. Nunes, L.R. Viana, P.M. Guineheuc, V.A. da Silva Moris, J.M. Faulstich de Paiva, R. Barna, Y. Soudais, Life cycle assessment of a steam thermolysis process to recover carbon fibers from carbon fiber-reinforced polymer waste, Int. J. Life Cycle Assess 23 (2018) 1825–1838 [Google Scholar]
  22. A.D. La Rosa, D.R. Banatao, S.J. Pastine, A. Latteri, G. Cicala, Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment, Compos. B. Eng. 104 (2016) 17–25 [Google Scholar]
  23. M. Prinçaud, C. Aymonier, A. Loppinet-Serani, N. Perry, G. Sonnemann, Environmental feasibility of the recycling of carbon fibers from CFRPs by solvolysis using supercritical water ACS, Sustain. Chem. Eng. 2 (2014) 1498–1502 [Google Scholar]
  24. R.A. Witik, R. Teuscher, V. Michaud, C. Ludwig, J.A.E. Månson, Carbon fibre reinforced composite waste: an environmental assessment of recycling, energy recovery and landfilling, Compos. Part A Appl. Sci. Manuf. 49 (2013) 89–99 [Google Scholar]
  25. F. Meng, E.A. Olivetti, Y. Zhao, J.C. Chang, S.J. Pickering, J. McKechnie, Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options, ACS Sustain. Chem. Eng. 68 (2018) 9854–9865 [Google Scholar]
  26. S. Kumar, S. Krishnan, Recycling of carbon fiber with epoxy composites by chemical recycling for future perspective: a review, Chem. Pap. 74 (2020) 3785–3807 [Google Scholar]
  27. P.A. Vo Dong, C. Azzaro-Pantel, A.L. Cadene, Economic and environmental assessment of recovery and disposal pathways for CFRP waste management, Resour. Conserv. Recycl. 133 (2018) 63–75 [Google Scholar]
  28. R.J. Tapper, M.L. Longana, A. Norton, K.D. Potter, I. Hamerton, An evaluation of life cycle assessment and its application to the closed-loop recycling of carbon fibre reinforced polymers, Compos. B. Eng. 184 (2020) 107665 [Google Scholar]
  29. I. Delvere, M. Iltina, M. Shanbayev, A. Abildayeva, S. Kuzhamberdieva, D. Blumberga, Evaluation of polymer matrix composite waste recycling methods, Environ. Clim. Technol. 23 (2019) 168–187 [Google Scholar]
  30. C.V. Katsiropoulos, S.G. Pantelakis, A novel holistic index for the optimization of composite components and manufacturing processes with regard to quality, life cycle costs and environmental performance, Aerospace 7 (2020) 157 [Google Scholar]
  31. J. Hazell, Getting it right from the start. Developing a circular economy for novel materials. Green Alliance Report, London GB, 2017 [Google Scholar]
  32. M.K. Hagnell, M. Akermo, The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials, J. Clean. Prod. 223 (2019) 957–968 [Google Scholar]
  33. NetComposites, Resin comparison, 2019 https://netcomposites.com/guide/resin-systems/resin-comparison/ (Accessed 5 November 2020) [Google Scholar]
  34. K. Wong, T. Turner, S. Pickering, N. Warrior, The Potential for Fibre Alignment in the Manufacture of Polymer Composites from Recycled Carbon Fibre, SAE Int. J. Aerosp. 2 (2010) 225–231 [Google Scholar]
  35. S. Das, Life cycle assessment of carbon fiber-reinforced polymer composites, Int. J. Life Cycle Assess. 16 (2011) 268–282 [Google Scholar]
  36. S. Pimenta, S.T. Pinho, Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook, Waste Manag. 31 (2011) 378–392 [Google Scholar]
  37. H.L.H. Yip, S.J. Pickering, C.D. Rudd, Characterisation of carbon fibres recycled from scrap composites using fluidised bed process, Plast. Rubber Compos. 31 (2002) 278–282 [Google Scholar]
  38. S. Pickering, T.A. Turner, F. Meng, C. Morris, J. Heil, K. Wong, S. Melendi-Espina, Developments in the fluidised bed process for fibre recovery from thermoset composites, in: Proceedings of 2nd Annual Conference of Composites and Advanced Materials Expo, CAMX. Dallas, TEXAS, USA, 2015 [Google Scholar]
  39. G. Jiang, S.J. Pickering, E.H. Lester, T.A. Turner, K.H. Wong, N.A. Warrior, Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol, Compos Sci. Technol. 69 (2009) 192–198 [Google Scholar]
  40. R. Piñero-Hernanz et al, Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water, Compos. Part A Appl. Sci. Manuf. 39 (2008) 454–461 [Google Scholar]
  41. M.J. Keith, G. Oliveux, G. Leeke, Optimisation of solvolysis for recycling carbon fibre reinforced composites, in: Proceedings of the 17th European Conference of Composite Materials, Munich, Germany, 2016 [Google Scholar]
  42. J. Anderson, Determining Manufacturing Costs, CEP, (2009) 27–31 [Google Scholar]
  43. F. Meng, J. McKechnie, S.J. Pickering, An assessment of financial viability of recycled carbon fibre in automotive applications, Compos. Part A Appl. Sci. Manuf. 109 (2018) 207–220 [Google Scholar]
  44. S. Nunna, P. Blanchard, D. Buckmaster, S. Davis, M. Naebe, Development of a cost model for the production of carbon fibres, Heliyon 5 (2019) 10 [Google Scholar]
  45. B. Pillain, E. Gemechu, G. Sonnemann, Identification of key sustainability performance indicators and related assessment methods for the carbon fiber recycling sector, Ecol. Indic. 72 (2017) 833–847 [Google Scholar]
  46. N.A. Shuaib, P.T. Mativenga, Carbon footprint analysis of fibre reinforced composite recycling processes, Proc. Manuf. 7 (2017) 183–190 [Google Scholar]
  47. Y.F. Khalil, Comparative environmental and human health evaluations of thermolysis and solvolysis recycling technologies of carbon fiber reinforced polymer waste, Waste Manag. 76 (2018) 767–778 [Google Scholar]
  48. M. Velasquez, P.T. Hester, An analysis of multi-criteria decision making methods, IJOR 10 (2013) 56–66 [Google Scholar]
  49. K. Kalkanis, C.S. Psomopoulos, S. Kaminaris, G. Ioannidis, P. Pachos. Wind turbine blade composite materials − end of life treatment methods, Energy Proc. 157 (2019) 1136–1143 [Google Scholar]
  50. D.E. Ighravwe, S.A. Oke, A multi-criteria decision-making framework for selecting a suitable maintenance strategy for public buildings using sustainability criteria, J. Build. Eng. 24 (2019) 100753 [Google Scholar]
  51. T.L. Saaty, How to make a decision: the analytic hierarchy process, Eur. J. Oper. Res. 48 (1990) 9–26 [Google Scholar]
  52. SuperDecisions Software: www.superdecisions.com A program that is free to download and use for several months. For more information contact Creative Decisions Foundation, or email rozann@creativedecisions.net [Google Scholar]
  53. D. Baker, D. Mooney, Boeing 787–8 Design Certification and Manufacturing Systems Review; Federal Aviation Administration: Washington, DC, USA, 2014 [Google Scholar]
  54. Hexcel, HexTow® HM63 Carbon Fiber Datasheet (Aerospace), 2016 https://www.hexcel.com/user_area/content_media/raw/HM63_Aerospace_HexTow_DataSheet.pdf (Accessed 5 November 2020) [Google Scholar]
  55. Hexcel, 125°C versatile curing epoxy matrix for aerospace structures https://www.hexcel.com/user_area/content_media/raw/HexPly_M92_eu_DataSheet.pdf (Accessed 5 November 2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.