Open Access
Manufacturing Rev.
Volume 8, 2021
Article Number 19
Number of page(s) 8
Published online 06 July 2021
  1. Y.E. Ma, P. Irving, Residual stress effects and fatigue behavior of friction-stir-welded 2198-T8 Al-Li alloy joints, J. Aircraft 48 (2011) 1238–1244 [CrossRef] [Google Scholar]
  2. A.R. Shahani, I. Shakeri, Experimental evaluation of fatigue behaviour of thin Al5456 welded joints, Fatigue Fracture Eng. Mater. Struct. 43 (2020) 965–977 [CrossRef] [Google Scholar]
  3. Y.W. Shi, B.Y. Chen, J.X. Zhang, Effects of welding residual stresses on fatigue crack growth behaviour in butt welds of a pipeline steel, Eng. Fract. Mech. 36 (1990) 893–902 [CrossRef] [Google Scholar]
  4. Y.B. Lee, C.S. Chung, Y.K. Park, H.K. Kim, Effects of redistributing residual stress on the fatigue behavior of SS330 weldment, Int. J. Fatigue 20 (1998) 565–573 [CrossRef] [Google Scholar]
  5. M.A. Sutton, A.P. Reynolds, Y.Z. Ge, X. Deng, Limited weld residual stress measurements in fatigue crack propagation: Part II. FEM‐based fatigue crack propagation with complete residual stress fields, Fatigue Fracture Eng. Mater. Struct. 29 (2006) 537–545 [CrossRef] [Google Scholar]
  6. C.D. Liljedahl, O. Zanellato, M.E. Fitzpatrick, J. Lin, L. Edwards, The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading, Int. J. Fatigue 32 (2010) 735–743 [CrossRef] [Google Scholar]
  7. L. Zhu, M.P. Jia, A new approach for the influence of residual stress on fatigue crack propagation, Res. Phys. 7 (2017) 2204–2212 [Google Scholar]
  8. P. Ferro, F. Berto, M.N. James, Asymptotic residual stresses in butt-welded joints under fatigue loading, Theor. Appl. Fracture Mech. 83 (2016) 114–124 [CrossRef] [Google Scholar]
  9. A. Bergara, J.I. Dorado, A. Martin-Meizoso, J.M. Martínez-Esnaola, Fatigue crack propagation in complex stress fields: experiments and numerical simulations using the Extended Finite Element Method (XFEM), Int. J. Fatigue 103 (2017) 112–121 [CrossRef] [Google Scholar]
  10. E.A. Elshrief, A. El-Megharbel, A. Eldomiaty, H. Abdelhafez, Effect of crack orientation and residual stress on stress intensity factors of Butt-Welded steel joints, Port-Said Eng. Res. J. (in press), 2021. doi:10.21608/PSERJ.2021.44187.1065 [Google Scholar]
  11. R. Mishra, R.G. Burela, Thermo-electro-mechanical fatigue crack growth simulation in piezoelectric solids using XFEM approach, Theor. Appl. Fracture Mech. 104 (2019) 102388 [CrossRef] [Google Scholar]
  12. N.A. Abdullah, M. Akbar, N. Wirawan, J.L. Curiel-Sosa, Structural integrity assessment on cracked composites interaction with aeroelastic constraint by means of XFEM, Compos. Struct. 229 (2019) 111414 [CrossRef] [Google Scholar]
  13. M. Hashemzadeh, B.Q. Chen, C. Guedes Soares, Comparison between different heat sources types in thin-plate welding simulation, Developments in maritime transportation and exploitation of sea resources. Taylor & Francis, 2014, 329–335 [Google Scholar]
  14. X. Hu, J. Xu, X. Du, Y. Zhang, F. Zhou, Research on Fatigue Crack Propagation of 304 Austenitic Stainless Steel Based on XFEM and CZM, Metals 10 (2020) 727 [CrossRef] [Google Scholar]
  15. C.-H. Lee, K.-H.J.E.F.M. Chang, Finite element computation of fatigue growth rates for mode I cracks subjected to welding residual stresses, Eng. Fracture Mech. 78 (2011) 2505–2520 [CrossRef] [Google Scholar]
  16. L.W. Tsay, Y.C. Liu, M.C. Young, D.Y. Lin, Fatigue crack growth of AISI 304 stainless steel welds in air and hydrogen, Mater. Sci. Eng. A 374 (2004) 204–210 [CrossRef] [Google Scholar]
  17. M. Benachour, N.J.I.J.o.M.M.E. Benachour, Effect of mean stress on fatigue crack growth behavior of stainless steel 304L, Int. J. Mech. Mechatron. Eng. 5 (2011) 2268–2271 [Google Scholar]
  18. S. Abdullah, S. Beden, A.J.A.A. Ariffin, Theory Applications, Fatigue crack growth simulation of aluminium alloy under cyclic sequence effects, Mater. Des. 31 (2011) 237–258 [Google Scholar]
  19. J.A. Correia, A.M. De Jesus, P.M. Moreira, P.J. Tavares, Crack closure effects on fatigue crack propagation rates: application of a proposed theoretical model, Adv. Mater. Sci. Eng. 2016 (2016) [CrossRef] [Google Scholar]
  20. Y. Luo, W. Gu, W. Peng, Q. Jin, Q. Qin, C. Yi, A study on microstructure, residual stresses and stress corrosion cracking of repair welding on 304 stainless steel: part i-effects of heat input, Materials 13 (2020) 2416 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.