Open Access
Manufacturing Rev.
Volume 8, 2021
Article Number 21
Number of page(s) 7
Published online 12 July 2021
  1. A. Shailesh Rao, M.S. Tattimani, S.S. Rao, Effect of rotational speeds on the cast tube during vertical centrifugal casting process on appearance, microstructure and hardness behavior for Al-2Si alloy, Metal. Mater. Trans. B 46 (2015) 793–799 [CrossRef] [Google Scholar]
  2. Y. Jaluria, Fluid flow phenomena in materials processing—the 2000 freeman scholar lecture, J. Fluid. Eng. Trans. ASME 123 (2001) 173–210 [CrossRef] [Google Scholar]
  3. P.G. Mukunda, A. Shailesh Rao, S.S. Rao, Influence of rotational speed during centrifugal casting on sliding wear behaviour of the Al-2Si alloy, Front. Mater. Sci. China 3 (2009) 339–344 [CrossRef] [Google Scholar]
  4. B.C. Ray, U.K. Mohanty, B.B. Verma, Influence of crucible rotation speed on hardness, microstructure and impact properties, Trans. Indian Inst. Metals 59 (2006) 57–63 [Google Scholar]
  5. J.K. Singh, S.N. Ojha, Preparation of leaded Al-Si alloys by modified vertical centrifugal casting machine, Int. J. Eng. Innov. Technol. 2–9 (2013) 230–234 [Google Scholar]
  6. R. Ming-Xing, W. Guo-Tian, L. Bang-Sheng, W. Zhen-Long, F. Heng-Zhi, Flow equation and similarity criterion during centrifugal casting in micro-channel, Trans. Nonferrous Metals Soc. China 24 (2014) 1506–1511 [CrossRef] [Google Scholar]
  7. W. Qudong, C. Yongjun, C. Wenzhou, W. Yinhong, Centrifugally cast Zn-27Al-xMg-ySialloys and there insitu (Mg2Si+Si)/ZA27 composites, Mater. Sci. Eng. A 394 (2005) 425–434 [CrossRef] [Google Scholar]
  8. A. Shailesh Rao, P.G. Mukunda, S.S. Rao, Inference of optimal speed for sound centrifugal casting of tin, Can. Metal. Quart. Mater. Sci. 48 (2009) 157–166 [CrossRef] [Google Scholar]
  9. A. Shailesh Rao, P.G. Mukunda, S.S. Rao, Influence of teeming temperature of molten metal of tin during centrifugal casting, Int. J. Cast Metal Res. 23 (2010) 51–54 [CrossRef] [Google Scholar]
  10. K.S. Keerthi Prasad, Analysis of fluid flow in centrifugal casting, Front. Mater. Sci. China 4 (2010) 103–110 [CrossRef] [Google Scholar]
  11. W.S. Ping, L.D. Rong, G.J. Jie, L.C. Yun, Numerical simulation of microstructure evolution of Ti 6Al-4V alloy invertical centrifugal casting, Mater. Sci. Eng. A 426 (2006) 240–249 [CrossRef] [Google Scholar]
  12. H.K. Kyhung, J.C. Seong, J.Y. Kyung, Centrifugal casting of alumina for membrane application, J. Membrane Sci. 199 (2002) 69–74 [CrossRef] [Google Scholar]
  13. Madhusudhan, S. Narendranath, G.C. Mohankumar, P. Mukunda, Experimental study on rate of solidification of centrifugal casting, Int. J. Mech. Mater. Eng. 5 (2010) 101–105 [Google Scholar]
  14. G. Chirita, D. Soares, S. Filipe, Advantages of the centrifugal casting technique for the production of structural components with Al-Si alloys, Mater. Des. 29 (2008) 20–27 [CrossRef] [Google Scholar]
  15. F. Erdemir, Study on particle size and X-ray peak area ratios in high energy ball milling and optimization of the milling parameters using response surface method, Measurement 112 (2017) 53–60 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.