Open Access
Issue |
Manufacturing Rev.
Volume 8, 2021
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/mfreview/2021025 | |
Published online | 01 November 2021 |
- R.S. Malani, V.C. Malshe, B.N. Thorat, Polyols and polyurethanes from renewable sources: past, present and future — part 1: vegetable oils and lignocellulosic biomass, J. Coat. Technol. Res. (2021) 1–22 [Google Scholar]
- C. Ligoure, M. Cloitre, C. Le Chatelier, F. Monti, L. Leibler, Making polyurethane foams from microemulsions, Polymer 46 (2005) 6402–6410 [CrossRef] [Google Scholar]
- S. Członka, A. Strąkowska, K. Strzelec, A. Adamus-Włodarczyk, A. Kairytė, S. Vaitkus, Composites of rigid polyurethane foams reinforced with POSS, Polymers 11 (2019) 336 [CrossRef] [Google Scholar]
- S. Suleman, S.M. Khan, T. Jameel, W. Aleem, M. Shafiq, Synthesis and characterization of flexible and rigid polyurethane foam, Asian J. Appl. Sci. 2 (2014) 701–710 [Google Scholar]
- I.O. Oladele, J.O. Ajileye, S.R. Oke, O.O. Daramola, O.A. Adewumi, Thermal and water absorption properties of bio-synthetic hybrid reinforced polypropylene composites, Mater. Today 38 (2021) 994–998 [Google Scholar]
- S.L. Everitt, O.G. Harlen, H.J. Wilson, Bubble growth in a two-dimensional viscoelastic foam, J. Non-Newtonian Fluid Mech. 137 (2006) 46–59 [CrossRef] [Google Scholar]
- S. Tan, T. Abraham, D. Ference, C.W. Macosko, Rigid polyurethane foams from a soybean oil-based polyol, Polymer 52 (2011) 2840–2846 [CrossRef] [Google Scholar]
- K.K. Alaneme, S.R. Oke, J.A. Omotoyinbo, Water absorption characteristics of polyester matrix composites reinforced with oil palm ash and oil palm fibre, Usak Univ. J. Mater. Sci. 2 (2013) 109–120 [Google Scholar]
- I.O. Oladele, Effect of bagasse fibre reinforcement on the mechanical properties of polyester composites, J. Assoc. Prof. Eng. Trinidad Tobago 42 (2014) 12–15 [Google Scholar]
- S. Matsumura, Y. Soeda, K. Toshima, Perspectives for synthesis and production of polyurethanes and related polymers by enzymes directed toward green and sustainable chemistry, Appl. Microbiol. Biotechnol. 70 (2006) 12–20 [CrossRef] [Google Scholar]
- M. Urgun-Demirtas, D. Singh, K. Pagilla, Laboratory investigation of biodegradability of a polyurethane foam under anaerobic conditions, Polym. Degrad. Stab. 92 (2007) 1599–1610 [CrossRef] [Google Scholar]
- D. Yan, L. Xu, C. Chen, J. Tang, X. Ji, Z. Li, Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes, Polym. Int. 61 (2012) 1107–1114 [CrossRef] [Google Scholar]
- T. Widya, C.W. Macosko, Nanoclay‐modified rigid polyurethane foam, J. Macromol. Sci. B 44 (2005) 897–908 [CrossRef] [Google Scholar]
- B.H.S. Thimmappa, A. Karthik, B. Shivamurthy, N. Naik, S. Sharma, D.K. Shetty, Recent advances in carbon-based polymer composites for effective electromagnetic interference (Emi) shielding, Int. J. Adv. Sci. Technol. 29 (2020) 6207–6234 [Google Scholar]
- L. Verdolotti, M.R. Di Caprio, M. Lavorgna, G.G. Buonocore, Polyurethane nanocomposite foams: Correlation between nanofillers, porous morphology, and structural and functional properties, In Polyurethane Polymers. Elsevier (2017) pp. 277–310 [CrossRef] [Google Scholar]
- B. Czupryński, J. Paciorek‐Sadowska, J. Liszkowska, Modifications of the rigid polyurethane-polyisocyanurate foams, J. Appl. Polym. Sci. 100 (2006) 2020–2029 [CrossRef] [Google Scholar]
- J. Liszkowska, B. Czupryński, J. Paciorek-Sadowska, Thermal properties of polyurethane-polyisocyanurate (PUR-PIR) foams modified with tris (5-hydroxypenthyl) citrate, J. Adv. Chem. Eng. 6 (2016) [CrossRef] [Google Scholar]
- M.C. Saha, M.E. Kabir, S. Jeelani, Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles, Mater. Sci. Eng. A 479 (2008) 213–222 [CrossRef] [Google Scholar]
- U.S.T.A. Nazim, Effects of kaolin additions on thermal behaviors of rigid polyurethane foams, J. Therm. Eng. 5 (2019) 70–76 [Google Scholar]
- M.F. Sonnenschein, R. Prange, A.K. Schrock, Mechanism for compression set of TDI polyurethane foams, Polymer 48 (2007) 616–623 [CrossRef] [Google Scholar]
- ASTM D2240-00 Standard Test Methods for Determining the hardness of soft and hard plastics, North America, 2000 [Google Scholar]
- L. Zhang, X. Ding, Y. Ou, Properties of rigid polyurethane foams prepared with synthesized PIPA polyol, Am. J. Chem. Appl. 1 (2014) 7–14 [Google Scholar]
- A.S.T.M Standard, D790-03. Test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken (PA), 2003 [Google Scholar]
- D.D. Luong, V.C. Shunmugasamy, O.M. Strbik, III., N. Gupta, High strain rate compressive behavior of polyurethane resin and polyurethane/Al2O3 hollow sphere syntactic foams, J. Compos. (2014) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.