Open Access
Manufacturing Rev.
Volume 8, 2021
Article Number 26
Number of page(s) 17
Published online 12 October 2021
  1. S. Kusumadewi, S. Hartati, A. Harjoko, R. Wardoyo, Fuzzy Multi-Attribute Decision Making (FUZZY MADM), Penerbit Graha Ilmu, Yogyakarta 2006 [Google Scholar]
  2. E.K. Zavadskas, Z. Turskis, J. Antucheviciene, A. Zakarevicius, Optimization of weighted aggregated sum product assessment, Elektr. ir Elektrotech 122 (2012) 3–6 [Google Scholar]
  3. C.-L. Hwang, Y.-J. Lai, T.-Y. Liu, A new approach for multiple objective decision making, Comput. Oper. Res. 20 (1993) 889–899 [Google Scholar]
  4. S. Opricovic, G.-H. Tzeng, Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS, Eur. J. Oper. Res. 156 (2004) 445–455 [CrossRef] [Google Scholar]
  5. W. Brauers, Optimization methods for a stakeholder society. A revolution in economic thinking by multi-objective optimization, Springer, Kluwer, 2004 [Google Scholar]
  6. E. Triantaphyllou, Multi-criteria Decision Making Methods: A Comparative Study, Springer − Science + Busines Media, 2020 [Google Scholar]
  7. S. Mufazzal, S.M. Muzakkir, A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals, Comput. Ind. Eng. (2008) 1–38 [Google Scholar]
  8. K. Maniya, M.G. Bhatt, A selection of material using a novel type decision-making method: preference selection index method, Mater. Des. 31 (2010) 1785–1789 [Google Scholar]
  9. Ch.M. Rao, K. Venkatasubbaiah, Application of MCDM approach-TOPSIS for the multi-objective optimization problem, Int. J. Grid Distrib. Comput. 9 (2016) 17–32 [Google Scholar]
  10. B. Singaravel, T. Selvaraj, Optimization of machining parameters in turning operation using combined TOPSIS and AHP method, Tehnički vjesnik 22 (2015) 1475–1480 [Google Scholar]
  11. P. Umamahesarrao, D. Ranga Rauju, K. Naga Sai Suman, B. Ravi Sankar, Optimizing cutting parameters in hard turning of AISI 52100 steel using topsis approach, J. Mech. Energy Eng. 3 (2019) 227–232 [Google Scholar]
  12. Ch.M. Rao, K.J. Rao, K.L. Rao, Multi-objective optimization of MRR, Ra and Rz using Topsis, Int. J. Eng. Sci. Res. Technol. 5 (2016) 376–384 [Google Scholar]
  13. S.S. Mane, A.M. Mulla, Relevant optimization method selection in turning of AISI D2 steel using Crygenic cooling, Int. J. Creat. Res. Thoughts 8 (2020) 803–812 [Google Scholar]
  14. K. Maity, A. Khan, Application of MCDM-based TOPSIS method for the selection of optimal process parameter in turning of pure titanium, Benchmarking 24 (2017) 1–19 [Google Scholar]
  15. H. Majumder, A. Saha, Application of MCDM based hybrid optimization tool during turning of ASTM A588, Decis. Sci. Lett. 7 (2018) 143–156 [Google Scholar]
  16. R. Singh, J.S. Dureja, M. Dogra, J.S. Randhawa, Optimization of machining parameters under MQL turning of Ti-6Al-4V alloy with textured tool using multi-attribute decision-making methods, World J. Eng. 16 (2019) 648–659 [Google Scholar]
  17. N.V. Thien, D.H. Tien, N.-T. Nguyen, D.D. Trung, Multi-Objective Optimization of turning process using VIKOR method, J. Appl. Eng. Sci. (2021) [Google Scholar]
  18. A. Khan, K. Maity, A novel MCDM approach for simultaneous optimization of some correlated machining parameters in turning of CP-titanium grade 2, Int. J. Eng. Res. Africa 22 (2016) 94–111 [Google Scholar]
  19. K.A. Vikram, T.V.K. Kanth, Shabana, K. Suresh, Experimental evaluation for multi-response optimality on AISI 316L materials with coated carbide inserts using GRA and Vikor methods, Int. J. Mech. Product. Eng. Res. Dev. 8 (2018) 1197–1206 [Google Scholar]
  20. I. Nayak, J. Rana, Selection of a suitable multiresponse optimization technique for turning operation, Decis. Sci. Lett. 5 (2016) 129–142 [Google Scholar]
  21. G.K. Kumar, Ch.M. Rao, V.V.S. Kesava Rao, Investigation of effects of speed and depth of cut on multiple responses using Vikor analysis, Int. J. Modern Trends Eng. Res. 5 (2018) 164–168 [Google Scholar]
  22. D.D. Trung, N.-T. Nguyen, D.V. Duc, Study on multi-objective optimization of the turning process of EN 10503 steel by combination of Taguchi method and Moora technique, Eureka 2 (2021) 52–65 [Google Scholar]
  23. B. Singaravel, T. Selvaraj, S. Vinodh, Multi-objective optimization of turning parameters using the combined Moora and Entropy method, Trans. Can. Soc. Mech. Eng. 40 (2016) 101–111 [Google Scholar]
  24. M. Abas, B. Salah, Q.S. Khalid, I. Hussain, A.R. Babar, R. Nawaz, R. Khan, W. Saleem, Experimental investigation and statistical evaluation of optimized cutting process parameters and cutting conditions to minimize cutting forces and shape deviations in Al6026-T9, Materials 13 (2020) 1–21 [Google Scholar]
  25. A. Khan, K. Maity, D. Jhodkar, An integrated fuzzy-MOORA method for the selection of optimal parametric combination in turing of commercially pure titanium, Springer Ser. Adv. Manufactur. (2020) 163–184 [Google Scholar]
  26. V.R. Pathapalli, V.R. Basam, S.K. Gudimetta, M.R. Koppula, Optimization of machining parameters using WASPAS and MOORA, World J. Eng. 17 (2020) 237–246 [Google Scholar]
  27. A. Saha, H. Majumder, Multi criteria selection of optimal machining parameter in turning operation using comprehensive grey complex proportional assessment method for ASTM A36, Int. J. Eng. Res. Africa 23 (2016) 24–32 [CrossRef] [Google Scholar]
  28. Ch.M. Rao, P.S. Reddy, D. Suresh, R.J. Kumar, Optimization of turning process parameters using PSI-based desirability-grey analysis, Recent Adv. Mater. Sci. (2019) 231–246 [Google Scholar]
  29. D.D. Trung, N.V. Thien, N.-T. Nguyen, Application of TOPSIS method in multi-objective optimization of the grinding process using segmented grinding wheel, Tribol. Ind. 43 (2021) 12–22 [Google Scholar]
  30. N.Z. Khan, T.S.A. Ansari, A.N. Siddiquee, Z.A. Khan, Selection of E-learning websites using a novel Proximity Indexed Value (PIV) MCDM method, J. Comput. Edu. 6 (2019) 241–256 [Google Scholar]
  31. S. Wakeel, S. Bingol, M.N. Bashir, S. Ahmad, Selection of sustainable material for the manufacturing of complex automotive products using a new hybrid Goal Programming Model for Best Worst Method-Proximity Indexed Value method, Proc. Inst. Mech. Eng. L 0 (2020) 1–15 [Google Scholar]
  32. A. Ulutaş, Ç. Karakoy, An analysis of the logistics performance index of EU countries with an integrated MCDM model, Econ. Bus. Rev. 5 (2019) 49–69 [Google Scholar]
  33. J. Raigar, V.S. Sharma, S. Srivastava, R. Chand, J. Singh, A decision support system for the selection of an additive manufacturing process using a new hybrid MCDM technique, Sādhanā 45 (2020) 1–14 [Google Scholar]
  34. X. Li, K. Wang, L. Liu, J. Xin, H. Yang, C. Gao, Application of the entropy weight and TOPSIS method in safety evaluation of coal mines, Proc. Eng. 26 (2011) 2085–2091 [Google Scholar]
  35. Y. Zhu, D. Tian, F. Yan, Effectiveness of entropy weight method in decision-making, Math. Probl. Eng. (2020) 1–5 [Google Scholar]
  36. Z. Zhi-hong, Y. Yi, S. Jing-nan, Entropy method for determination of weight of evaluating in fuzzy synthetic evaluation for water quality assessment, J. Environ. Sci. 18 (2006) 1020–1023 [Google Scholar]
  37. S.K. Pattnaik, M. Behera, S. Padhi, P. Dash, S.K. Sarangi, Study of cutting force and tool wear during turning of aluminium with WC, PCD and HFCVD coated MCD tools, Manufactur. Rev. 7 (2020) 1–14 [CrossRef] [Google Scholar]
  38. P.B. Patole, V.V. Kulkarni, S.G. Bhatwadekar, MQL machining with nano fluid: a review, Manufactur. Rev. 8 (2021) 1–18 [Google Scholar]
  39. V.V.K. Lakshmi, K. Venkata Subbaiah, A.V. Kothapalli, K. Suresh, Parametric optimization while turning Ti-6Al-4V alloy in Mist-MQCL (Green environment) using the DEAR method, Manufactur. Rev. 7 (2020) 1–13 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.