Open Access
Manufacturing Rev.
Volume 8, 2021
Article Number 25
Number of page(s) 8
Published online 23 August 2021
  1. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006) 763–777 [Google Scholar]
  2. S.Q. Guo, T. Nishimura, Y. Kagawa, J.M. Yang, Spark plasma sintering of zirconium diborides, J. Am. Ceram. Soc. 91 (2008) 2848–2855 [Google Scholar]
  3. T. Nishimura, M. Mitomo, H. Hirotsuru, M. Kawahara, Fabrication of silicon nitride nano-ceramics by spark plasma sintering, J. Mater. Sci. Lett. 14 (1995) 1046–1047 [Google Scholar]
  4. B.J. Babalola, M.B. Shongwe, A.L. Rominiyi, P.L. Lepele, A.P.I. Popoola, The fabrication and characterization of spark plasma sintered nickel based binary alloy at different heating rate, J. Micro Nano-Manufactur. 7 (2019) 31004–31005 [Google Scholar]
  5. A.L. Rominiyi, M.B. Shongwe, N. Maledi, B.J. Babalola, P.A. Olubambi, Synthesis, microstructural and phase evolution in Ti-2Ni and Ti-10Ni binary alloys consolidated by spark plasma sintering technique, Int. J. Adv. Manuf. Technol. 104 (2019) 1041–1049 [Google Scholar]
  6. L.K. Singh, A. Bhadauria, S. Jana, T. Laha, Effect of sintering temperature and heating rate on crystallite size, densification behaviour and mechanical properties of Al-MWCNT nanocomposite consolidated via spark plasma sintering, Acta Metall. Sin. English Lett. 31 (2018) 1019–1030 [Google Scholar]
  7. Y. Cheng, Z. Cui, L. Cheng, D. Gong, W. Wang, Effect of particle size on densification of pure magnesium during spark plasma sintering, Adv. Powder Technol. 28 (2017) 1129–1135 [CrossRef] [Google Scholar]
  8. A.I. Journal, O.E. Falodun, B.A. Obadele, S.R. Oke, O. Oladeji, P.A. Olubambi, O.E. Falodun, B.A. Obadele, S.R. Oke, Effect of TiN and TiCN additions on spark plasma sintered Ti − 6Al − 4V, Part. Sci. Technol. 38 (2020) 156–165 [CrossRef] [Google Scholar]
  9. A.M. Okoro, R. Machaka, S.S. Lephuthing, S.R. Oke, M.A. Awotunde, P.A. Olubambi, Evaluation of the sinterability, densification behaviour and microhardness of spark plasma sintered multiwall carbon nanotubes reinforced Ti6Al4V nanocomposites, Ceram. Int. (2019) [Google Scholar]
  10. W. Zeng, L. Gao, L. Gui, J. Guo, Sintering kinetics of α-Al2O3 powder, Ceram. Int. 25 (1999) 723–726 [CrossRef] [Google Scholar]
  11. L.A. Stanciu, V.Y. Kodash, J.R. Groza, Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32 (2001) 2633–2638 [CrossRef] [Google Scholar]
  12. S. Gephart, J. Singh, A. Kulkarni, Field assisted sintering of SiC using extreme heating rates, J. Mater. Sci. 46 (2011) 3659–3663 [CrossRef] [Google Scholar]
  13. K. Hu, X. Li, S. Qu, Y. Li, Effect of heating rate on densification and grain growth during spark plasma sintering of 93W-5. 6Ni-1.4Fe heavy alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 4323–4336 [CrossRef] [Google Scholar]
  14. Y. Zhou, K. Hirao, Y. Yamauchi, S. Kanzaki, Effects of heating rate and particle size on pulse electric current sintering of alumina, Scr. Mater. 48 (2003) 1631–1636 [CrossRef] [Google Scholar]
  15. Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, Spark plasma sintering of alumina, J. Am. Ceram. Soc. 85 (2002) 1921–1927 [CrossRef] [Google Scholar]
  16. B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina, J. Eur. Ceram. Soc. 29 (2009) 323–327 [CrossRef] [Google Scholar]
  17. T.W. Lee, C.H.Ã. Lee, The effect of heating rate on the reactive sintering of Ti ± 48% Al elemental powder mixture, 7 (1998) 1367–1370 [Google Scholar]
  18. Z. Trzaska, G. Bonnefont, G. Fantozzi, J.P. Monchoux, Comparison of densification kinetics of a TiAl powder by spark plasma sintering and hot pressing, Acta Mater. 135 (2017) 1–13 [CrossRef] [Google Scholar]
  19. O.O. Ayodele, A.O. Adegbenjo, M.A. Awotunde, M.B. Shongwe, P.A. Olubambi, The influence of heating rate on the microstructural evolutions and mechanical properties of spark plasma sintered multi-walled carbon nanotubes reinforced NiAl intermetallic matrix composites, Mater. Sci. Eng. A. 773 (2020) 138869 [CrossRef] [Google Scholar]
  20. Z. Zhaohui, W. Fuchi, W. Lin, L. Shukui, S. Osamu, Sintering mechanism of large-scale ultrafine-grained copper prepared by SPS method, Mater. Lett. 62 (2008) 3987–3990 [CrossRef] [Google Scholar]
  21. S. Diouf, A. Molinari, Densification mechanisms in spark plasma sintering: Effect of particle size and pressure, Powder Technol. 221 (2012) 220–227 [CrossRef] [Google Scholar]
  22. L. Shahrdami, A. Sedghi, M.H. Shaeri, Microstructure and mechanical properties of Al matrix nanocomposites reinforced by different amounts of CNT and SiCW, Compos. Part B Eng. (2019) 107081 [CrossRef] [Google Scholar]
  23. S. Suárez, E. Ramos-Moore, B. Lechthaler, F. Mücklich, Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites, Carbon N. Y. 70 (2014) 173–178 [CrossRef] [Google Scholar]
  24. I.K. Aliyu, N. Saheb, S.F. Hassan, N. Al-Aqeeli, Microstructure and Properties of Spark Plasma Sintered Aluminum Containing 1 wt.% SiC Nanoparticles, Metals (Basel). 5 (2015) 70–83 [CrossRef] [Google Scholar]
  25. N. MURAYAMA, W. SHIN, Effect of rapid heating on densification and grain growth in hot pressed alumina, J. Ceram. Soc. Japan. 108 (2000) 799–802 [CrossRef] [Google Scholar]
  26. J. Besson, M. Abouaf, Grain growth enhancement in alumina during hot isostatic pressing, Acta Metall. Mater. 39 (1991) 2225–2234 [CrossRef] [Google Scholar]
  27. P. Cavaliere, B. Sadeghi, A. Shabani, Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering, J. Mater. Sci. 52 (2017) 8618–8629 [CrossRef] [Google Scholar]
  28. H. Zhang, Y. Xu, B. Wang, X. Zhang, J. Yang, K. Niihara, Effects of heating rate on the microstructure and mechanical properties of rapid vacuum sintered translucent alumina, Ceram. Int. 41 (2015) 12499–12503 [CrossRef] [Google Scholar]
  29. S. Simões, F. Viana, M.A.L. Reis, M.F. Vieira, Improved dispersion of carbon nanotubes in aluminum nanocomposites, Compos. Struct. 108 (2014) 992–1000 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.