Open Access
Review
Issue |
Manufacturing Rev.
Volume 8, 2021
|
|
---|---|---|
Article Number | 29 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1051/mfreview/2021028 | |
Published online | 23 November 2021 |
- J. Yang, F.Z. Cui, I.S. Lee, X. Wang, Plasma surface modification of magnesium alloy for biomedical application, Surf. Coatings Technol. 205 (2010) S182–S187 [CrossRef] [Google Scholar]
- J. Zhang, Q. Yu, Y. Jiang, Q. Li, An experimental study of cyclic deformation of extruded AZ61A magnesium alloy, Int. J. Plast. 27 (2011) 768–787 [CrossRef] [Google Scholar]
- S. Zhu, T. Luo, T. Zhang, Y. Liu, Y. Yang, Effects of extrusion and heat treatments on microstructure and mechanical properties of Mg-8Zn-1Al-0. 5Cu-0.5Mn alloy, Trans. Nonferrous Met. Soc. China 27 (2017) 73–81 [CrossRef] [MathSciNet] [Google Scholar]
- X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials 30 (2009) 484–498 [CrossRef] [Google Scholar]
- H. Westengen, 9 Magnesium, Light Met. Age Mag. 58 (2000) 44–52 [Google Scholar]
- B.L. Mordike, T. Ebert, Magnesium: properties — applications — potential, Mater. Sci. Eng. A 302 (2001) 37–45 [CrossRef] [Google Scholar]
- M. Heger, M. Horstmann, 9–Mechanical joining of magnesium alloys, in Woodhead Publishing Series in Welding and Other Joining Technologies , edited by M.A. Liu (Woodhead Publishing, 2010), pp. 122–148 [Google Scholar]
- N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koç, Review of magnesium-based biomaterials and their applications, J. Magnes. Alloy. 6 (2018) 23–43 [CrossRef] [Google Scholar]
- N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koç, Review of magnesium-based biomaterials and their applications, J. Magn. Alloy. 6 (2018) 23–43 [CrossRef] [Google Scholar]
- L. Zhang, J. Zhang, C. Chen, Y. Gu, Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications, Corros. Sci. 91 (2015) 7–28 [CrossRef] [Google Scholar]
- L. Liu, Front matter, in Woodhead Publishing Series in Welding and Other Joining Technologies , edited by M.A. Liu (Woodhead Publishing, 2010), pp. i–iii [Google Scholar]
- X. Cao, M. Jahazi, J.P. Immarigeon, W. Wallace, A review of laser welding techniques for magnesium alloys, J. Mater. Process. Technol. 171 (2006) 188–204 [CrossRef] [Google Scholar]
- L. Liu, D.-H. Cai, Z.-D. Zhang, Gas tungsten arc welding of magnesium alloy using activated flux-coated wire, Scr. Mater. − Scr. MATER 57 (2007) 695–698 [CrossRef] [Google Scholar]
- N.J. Kim, Critical Assessment 6: Magnesium sheet alloys: Viable alternatives to steels?, Mater. Sci. Technol. 30 (2014) 1925–1928 [CrossRef] [Google Scholar]
- T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.C. Suh, N.J. Kim, Designing a magnesium alloy with high strength and high formability, Nat. Commun. 9 (2018) doi: 10.1038/s41467-018-04981-4 [Google Scholar]
- S.R. Agnew, Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast. 21 (2005) 1161–1193 [CrossRef] [Google Scholar]
- K. Frydrych, T. Libura, Z. Kowalewski, M. Maj, K. Kowalczyk-Gajewska, On the role of slip, twinning and detwinning in magnesium alloy AZ31B sheet, Mater. Sci. Eng. A 813 (2021) doi: 10.1016/j.msea.2021.141152 [CrossRef] [Google Scholar]
- Z.D. Zhang, Q.J. Cao, Study on metal transfer behaviour in metal inert gas arc welding with activating flux for magnesium alloy, Sci. Technol. Weld. Join. 17 (2012) 550–555 [CrossRef] [Google Scholar]
- M. Iqbal, M. Ayub, Z. Majeed, H.M. Akram, Optimal welding parameters with 10 keV point source electron gun, Vacuum 85 (2011) 654–656 [CrossRef] [Google Scholar]
- Z.D. Zhang, Q.J. Cao, Study on metal transfer behaviour in metal inert gas arc welding with activating flux for magnesium alloy, Sci. Technol. Weld. Join. 17 (2012) 550–555 [CrossRef] [Google Scholar]
- Y.-C. Lin, J.-J. Liu, B.-Y. Lin, C.-M. Lin, H.-L. Tsai, Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds, Mater. Des. 35 (2012) 350–357 [CrossRef] [Google Scholar]
- Y.H. Yin, N. Sun, T.H. North, S.S. Hu, Microstructures and mechanical properties in dissimilar AZ91/AZ31 spot welds, Mater. Charact. 61 (2010) 1018–1028 [Google Scholar]
- Q. Yang, S. Mironov, Y.S. Sato, K. Okamoto, Material flow during friction stir spot welding. Mater. Sci. Eng. A 527 (2010) 4389–4398 [CrossRef] [Google Scholar]
- K. Abderrazak, W. Ben Salem, H. Mhiri, G. Lepalec, M. Autric, Modelling of CO2 laser welding of magnesium alloys, Opt. Laser Technol. 40 (2008) 581–588 [CrossRef] [Google Scholar]
- M. Gao, H. Wang, K. Hao, H. Mu, X. Zeng, Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation, J. Manuf. Process. 45 (2019) 92–99 [CrossRef] [Google Scholar]
- M. Gao, H.-G. Tang, X.-F. Chen, X.-Y. Zeng, High power fiber laser arc hybrid welding of AZ31B magnesium alloy, Mater. Des. 42 (2012) 46–54 [CrossRef] [Google Scholar]
- L. Liu, Contributor contact details, in Woodhead Publishing Series in Welding and Other Joining Technologies , edited by M.A. Liu (Woodhead Publishing, 2010), pp. xi–xiii [Google Scholar]
- H. Sun, G. Song, L.F. Zhang, Effects of oxide activating flux on laser welding of magnesium alloy, Sci. Technol. Weld. Join. 13 (2008) 305–311 [CrossRef] [Google Scholar]
- H. Shi, R. Qiu, J. Zhu, K. Zhang, H. Yu, G. Ding, Effects of welding parameters on the characteristics of magnesium alloy joint welded by resistance spot welding with cover plates, Mater. Des. 31 (2010) 4853–4857 [CrossRef] [Google Scholar]
- X. Cao, M. Jahazi, Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy, Mater. Des. 30 (2009) 2033–2042 [CrossRef] [Google Scholar]
- G. Mahendran, V. Balasubramanian, T. Senthilvelan, Developing diffusion bonding windows for joining AZ31B magnesium-AA2024 aluminium alloys, Mater. Des. 30 (2009) 1240–1244 [CrossRef] [Google Scholar]
- L. Peng, L. Yajiang, G. Haoran, W. Juan, A study of phase constitution near the interface of Mg/Al vacuum diffusion bonding, Mater. Lett. 59 (2005) 2001–2005 [CrossRef] [Google Scholar]
- H. Liu, J. Zhou, D. Zhao, Y. Liu, J. Wu, Y. Yang, B. Ma, H. Zhuang, Characteristics of AZ31 Mg alloy joint using automatic TIG welding, Int. J. Miner. Metall. Mater. 24 (2017) 102–108 [CrossRef] [Google Scholar]
- D. Min, J. Shen, S. Lai, J. Chen, N. Xu, H. Liu, Effects of heat input on the low power Nd:YAG pulse laser conduction weldability of magnesium alloy AZ61, Opt. Lasers Eng. 49 (2011) 89–96 [CrossRef] [Google Scholar]
- L. Lihui, L. Kangning, G. Cai, X. Yang, C. Guo, G. Bu, A critical review on special forming processes and associated research for lightweight components based on sheet and tube materials, Manuf. Rev. 1 (2014). doi: 10.1051/mfreview/2014007 [Google Scholar]
- B. Skowronska, T. Chmielewski, D. Golanski, J. Szulc, Weldability of S700MC steel welded with the hybrid plasma + MAG method, Manuf. Rev. 7 (2020) doi: 10.1051/mfreview/2020001 [Google Scholar]
- T. Wang, P. Upadhyay, S. Whalen, A review of technologies for welding magnesium alloys to steels, Int. J. Precis. Eng. Manuf. Technol. (2020) doi: 10.1007/s40684-020-00247-x [Google Scholar]
- U. A, J. Dhas, Friction stir welding of magnesium alloys − a review, Adv. Mater. Sci. Eng. An Int. J. 2 (2015) 7–18 [Google Scholar]
- P. Asadi, Welding of magnesium alloys, Sci. Am. (2012) 107–119 [Google Scholar]
- N.S. Mohamed, J. Alias, A review on the effect of welding on the corrosion of magnesium alloys, IOP Conf. Ser. Mater. Sci. Eng. 257 (2017) [Google Scholar]
- S. Satonaka, C. Iwamoto, G. Murakami, Y. Matsumoto, Resistance spot welding of magnesium alloy sheets with cover plates, Weld. World 56 (2012) 44–50 [CrossRef] [Google Scholar]
- A. Kouadri-Henni, L. Barrallier, Mechanical properties, microstructure and crystallographic texture of magnesium AZ91-D alloy welded by friction stir welding (FSW), Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 4983–4996 [CrossRef] [Google Scholar]
- V. Subravel, G. Padmanaban, V. Balasubramanian, Effect of welding speed on microstructural characteristics and tensile properties of GTA welded AZ31B magnesium alloy, Trans. Nonferrous Met. Soc. China 24 (2014) 2776–2784 [CrossRef] [Google Scholar]
- M. Gao, X.Y. Zeng, B. Tan, J.C. Feng, Study of laser MIG hybrid welded AZ31 magnesium alloy, Sci. Technol. Weld. Join. 14 (2009) 274–281 [CrossRef] [Google Scholar]
- K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scr. Mater. 63 (2010) 725–730 [CrossRef] [Google Scholar]
- B.Q. Shi, R.S. Chen, W. Ke, Effects of yttrium and zinc on the texture, microstructure and tensile properties of hot-rolled magnesium plates, Mater. Sci. Eng. A 560 (2013) 62–70 [CrossRef] [Google Scholar]
- W.. Oates, A. Saitta, Welding Handbook (American Welding Society, Miami, 1998) [Google Scholar]
- U.S. Dixit, V. Yadav, P.M. Pandey, A. Roy, V.V. Silberschmidt, 14–Modeling of friction in manufacturing processes, in Elsevier Series in Mechanics of Advanced Materials , edited by P.T. Silberschmidt (Elsevier, 2020), pp. 415–444 [Google Scholar]
- A. Dhanapal, S.R. Boopathy, V. Balasubramanian, K. Chidambaram, A.R.T. Zaman, Experimental investigation of the corrosion behavior of friction stir welded AZ61A magnesium alloy welds under salt spray corrosion test and galvanic corrosion test using response surface methodology, Int. J. Met. (2013) 1–17 [Google Scholar]
- J. Cornu, Historical devel opmen T of, Fundam. Fusion Weld. Technol. (1988) [CrossRef] [Google Scholar]
- E. Bayraktar, 6.01-Introduction to Welding and Bonding Technologies, edited by S. Hashmi, G.F. Batalha, C.J. Van Tyne, B.B.T.-C.M.P. Yilbas (Elsevier, Oxford, 2014) pp. 1–2 [Google Scholar]
- H. Bhadeshia, R. Honeycombe, Chapter 13–Weld Microstructures, H. Bhadeshia and R.B.T.-S.M. and P. (Fourth E. Honeycombe, Eds. Butterworth-Heinemann, 2017, pp. 377–400. doi: 10.1016/B978-0-08-100270-4.00013-5 [Google Scholar]
- C. Johansson, 22–Quality assurance and quality management, in Woodhead Publishing Series in Welding and Other Joining Technologies , edited by S.E. Weman (Woodhead Publishing, 2012), pp. 245–258 [Google Scholar]
- D. Davidson, K. Chan, R. McClung, S. Hudak, Comprehensive Structural Integrity (2003), pp. 129–161 [CrossRef] [Google Scholar]
- F. Czerwinski, Welding and Joining of Magnesium Alloys (2011). doi: 10.5772/13947 [Google Scholar]
- O.S. Ogbonna, S.A. Akinlabi, N. Madushele, P.M. Mashinini, A.A. Abioye, Application of MIG and TIG welding in automobile industry, J. Phys. Conf. Ser. 1378 (2019) doi: 10.1088/1742-6596/1378/4/042065 [Google Scholar]
- A. Jagetia, M.S.K.K. Nartu, S. Dasari, A. Sharma, B. Gwalani, R. Banerjee, Ordering-mediated local nano-clustering results in unusually large hall-petch strengthening coefficients in high entropy alloys, Mater. Res. Lett. Under Rev. (2020) doi: 10.1080/21663831.2020.1871440 [Google Scholar]
- M. Zhao, J.C. Li, Q. Jiang, Hall-Petch relationship in nanometer size range, J. Alloys Compd. 361 (2003) 160–164 [CrossRef] [Google Scholar]
- N. Hansen, Hall–Petch relation and boundary strengthening 51 (2004), 801–806, doi: 10.1016/j.scriptamat.2004.06.002 [Google Scholar]
- S. Kou, Y. Le, Nucleation mechanisms and grain refining of weld metal, Weld. J. (Miami, Fla) 65 (1986) [Google Scholar]
- G. Padmanaban, V. Balasubramanian, Influences of pulsed current parameters on mechanical and metallurgical properties of gas tungsten arc welded AZ31B magnesium alloys, Met. Mater. Int. 17 (2011) 679–687 [CrossRef] [Google Scholar]
- G. Wu, D. Zhao, L. Sun, Microstructure and mechanical properties of wire-filled tungsten argon arc welded joints for LA141 magnesium-lithium-aluminum alloy, Mater. Today Commun. 23 (2020) 100881 [CrossRef] [Google Scholar]
- D.X. Sun, D.Q. Sun, X.Y. Gu, Z.Z. Xuan, Hot cracking of metal inert gas arc welded magnesium alloy AZ91D, ISIJ Int. 49 (2009) 270–274 [CrossRef] [Google Scholar]
- G. Wu, D. Zhao, L. Sun, Microstructure and mechanical properties of wire-filled tungsten argon arc welded joints for LA141 magnesium-lithium-aluminum alloy, Mater. Today Commun. 23 (2020) 100881 [CrossRef] [Google Scholar]
- S.R.K. Rao, G.M. Reddy, M. Kamaraj, K.P. Rao, Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds, Mater. Sci. Eng. A 404 (2005) 227–234 [CrossRef] [Google Scholar]
- V. Subravel, N. Alagappan, N. Babu, Influence of arc oscillation frequency on tensile properties and microstructural characteristics of magnetic arc oscillation welded AZ31B magnesium alloy joints, Mater. Today Proc. 22 (2020) 606–613 [CrossRef] [Google Scholar]
- F. Yang, J. Zhou, R. Ding, Ultrasonic vibration assisted tungsten inert gas welding of dissimilar magnesium alloys, J. Mater. Sci. Technol. 34 (2018) 2240–2245 [CrossRef] [Google Scholar]
- T. Wen, S.Y. Liu, S. Chen, L.T. Liu, C. Yang, Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China (English Ed.) 25 (2015) 397–404 [CrossRef] [Google Scholar]
- H. Li, J. Zhang, Y. Xiong, Enhancement of AZ80 joints using ultrasonic vibration-assisted welding process, Sci. Technol. Weld. Join. 23 (2018) 308–315 [CrossRef] [Google Scholar]
- J. Zhou, Y. Wang, Effect of ultrasonic vibration field on tungsten inert gas welding of magnesium alloy and galvanized steel, Mater. Res. Express 6 (2018) 16519 [Google Scholar]
- T. Yuan, S. Kou, Z. Luo, Grain refining by ultrasonic stirring of the weld pool, Acta Mater. 106 (2016) 144–154 [CrossRef] [Google Scholar]
- I. Hadley, 3-Fracture assessment methods for welded structures, in Woodhead Publishing Series in Welding and Other Joining Technologies , edited by S. Macdonald (Woodhead Publishing, 2011), pp. 60–90 [Google Scholar]
- J. Shen, Y. Li, X. Xie, M. Liu, Formation of stress cracking in an AZ61 magnesium alloy joint, Mater. Manuf. Process. 29 (2014) 188–193 [CrossRef] [Google Scholar]
- G. Liang, S. Yuan, Study on the temperature measurement of AZ31B magnesium alloy in gas tungsten arc welding, Mater. Lett. 62 (2008) 2282–2284 [CrossRef] [Google Scholar]
- V. Subravel, N. Alagappan, N. Babu, Influence of arc oscillation frequency on tensile properties and microstructural characteristics of magnetic arc oscillation welded AZ31B magnesium alloy joints, Mater. Today Proc. 22 (2020) 606–613 [CrossRef] [Google Scholar]
- H.G. Dong, C.Q. Liao, L.Q. Yang, Microstructure and mechanical properties of AZ31B magnesium alloy gas metal arc weld, Trans. Nonferrous Met. Soc. China (English Ed). 22 (2012) 1336–1341 [CrossRef] [Google Scholar]
- G. Song, P. Wang, Pulsed MIG welding of AZ31B magnesium alloy, Mater. Sci. Technol. 27 (2011) 518–524 [CrossRef] [Google Scholar]
- L.L. Song Gang, W. Peng, Study on ac-PMIG welding of AZ31B magnesium alloy [J], Sci. Technol. Weld. Joining 15 (2010) 219−225 [CrossRef] [Google Scholar]
- L.L. Song Gang, W. Peng, Study on ac-PMIG welding of AZ31B magnesium alloy [J], Sci. Technol. Weld. Joining 15 (2010) 219−225 [CrossRef] [Google Scholar]
- Z. Zhang, X. Kong, Study on DC double pulse metal inert gas (MIG) welding of magnesium alloy, Mater. Manuf. Process. 27 (2012) 462–466 [CrossRef] [Google Scholar]
- Y. Luo, H. Ye, C. Du, H. Xu, Influence of focusing thermal effect upon AZ91D magnesium alloy weld during vacuum electron beam welding, Vacuum 86 (2012) 1262–1267 [CrossRef] [Google Scholar]
- Y. Luo, Modeling and analysis of vaporizing during vacuum electron beam welding on magnesium alloy, Appl. Math. Model. 37 (2013) 6177–6182 [CrossRef] [Google Scholar]
- E. Koleva, K. Vutova, G. Mladenov, The role of ingot-crucible thermal contact in mathematical modelling of the heat transfer during electron beam melting, Vacuum 62 (2001) 189–196 [CrossRef] [Google Scholar]
- Y. Luo, H. Ye, C. Du, H. Xu, Influence of focusing thermal effect upon AZ91D magnesium alloy weld during vacuum electron beam welding, Vacuum 86 (2012) 1262–1267 [CrossRef] [Google Scholar]
- Y. Luo, Modeling and analysis of vaporizing during vacuum electron beam welding on magnesium alloy, Appl. Math. Model. 37 (2013) 6177–6182 [CrossRef] [Google Scholar]
- H. Ye, H.L. Yang, Z.L. Yan, Study on electron beam welding of AZ61 magnesium alloy, Appl. Mech. Mater. 34–35 (2010) 1516–1520 [CrossRef] [Google Scholar]
- T. Asahina, H. Tokisue, Electron bean weldability of pure magnesium and AZ31 magnesium alloy, Mater. Trans. 42 (2001) 2345–2353 [CrossRef] [Google Scholar]
- T. Asahina, H. Tokisue, Electron bean weldability of pure magnesium and AZ31 magnesium alloy, Mater. Trans. 42 (2001) 2345–2353 [CrossRef] [Google Scholar]
- M. Wahba, M. Mizutani, Y. Kawahito, S. Katayama, Keyhole stability in disc laser welding of AZ31B and AZ61A magnesium alloys and weld metal properties, Sci. Technol. Weld. Join. 15 (2010) 559–566 [CrossRef] [Google Scholar]
- M. Harooni, B. Carlson, B.R. Strohmeier, R. Kovacevic, Pore formation mechanism and its mitigation in laser welding of AZ31B magnesium alloy in lap joint configuration, Mater. Des. 58 (2014) 265–276 [CrossRef] [Google Scholar]
- T. Yang, Y.L. Zhao, W.H. Liu, J.H. Zhu, J.J. Kai, C.T. Liu, Ductilizing brittle high-entropy alloys via tailoring valence electron concentrations of precipitates by controlled elemental partitioning, Mater. Res. Lett. 6 (2018) 600–606 [CrossRef] [Google Scholar]
- K. Hao, H. Wang, M. Gao, R. Wu, X. Zeng, Laser welding of AZ31B magnesium alloy with beam oscillation, J. Mater. Res. Technol. 8 (2019) 3044–3053 [CrossRef] [Google Scholar]
- Y. Sakai, K. Nakata, T. Tsumura, M. Ueda, T. Ueyama, K. Akamatsu, Fiber laser welding of noncombustible magnesium alloy, Mater. Sci. Forum − MATER SCI FORUM 580–582 (2008) 479–482 [CrossRef] [Google Scholar]
- J. Shen, L. Wen, Y. Li, D. Min, Effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy joints, Mater. Sci. Eng. A 578 (2013) 303–309 [CrossRef] [Google Scholar]
- S.H. Chowdhury, D.L. Chen, S.D. Bhole, E. Powidajko, D.C. Weckman, Y. Zhou, Fiber laser welded az31 magnesium alloy: the effect of welding speed on microstructure and mechanical properties, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43 (2012) 2133–2147 [CrossRef] [Google Scholar]
- J. Shen, L. Wen, Y. Li, D. Min, Effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy joints, Mater. Sci. Eng. A 578 (2013) 303–309 [CrossRef] [Google Scholar]
- B.A. Mikucki, J.D. Shearouse, Interdependence of Hydrogen and Microporosity in Magnesium Alloy AZ91 (SAE International, 1993) [Google Scholar]
- N. Seto, S. Katayama, A. Matsunawa, Porosity formation mechanism and suppression procedure in laser welding of aluminum alloy, Weld. Int. 15 (2001) 191–202 [CrossRef] [Google Scholar]
- M. Harooni, F. Kong, B. Carlson, R. Kovacevic, Mitigation of pore generation in laser welding of magnesium alloy AZ31B in lap joint configuration, ASME Int. Mech. Eng. Congr. Expo. Proc. 3 (2012) 919–927 [Google Scholar]
- D.R. Mulinari, C.A.R.P. Baptista, J.V.C. Souza, H.J.C. Voorwald, Mechanical properties of coconut fibers reinforced polyester composites, Procedia Eng. 10 (2011) 2074–2079 [CrossRef] [Google Scholar]
- M. Pastor, H. Zhao, R.P. Martukanitz, T. Debroy, Porosity, Underfill and magnesium loss during continuous wave Nd:YAG laser welding of thin plates of aluminum alloys 5182 and 5754, edited by A.B.T.-C.R.E. Sayigh (Elsevier, Oxford, 1999), pp. 207–216 [Google Scholar]
- C. Kammerhuber, R. Sommerfeld, High deposition MAG welding: used for welding bridges and structures, Weld. World / Le Soudage dans le Monde 38 (1996) 337–343 [Google Scholar]
- M. Harooni, B. Carlson, B.R. Strohmeier, R. Kovacevic, Pore formation mechanism and its mitigation in laser welding of AZ31B magnesium alloy in lap joint configuration, Mater. Des. 58 (2016) 265–276 [Google Scholar]
- J. Liu, J.H. Dong, K. Shinozaki, The welding of an ACM522 Mg alloy using a fiber laser, Mater. Sci. Forum 610−613 (2009) 911−914 [CrossRef] [Google Scholar]
- L. Yu, K. Nakata, J. Liao, Weld porosity in fibre laser weld of thixomolded heat resistant Mg alloys, Sci. Technol. Weld. Join. 14 (2009) 554–558 [CrossRef] [Google Scholar]
- K. Hao, H. Wang, M. Gao, R. Wu, X. Zeng, Laser welding of AZ31B magnesium alloy with beam oscillation, J. Mater. Res. Technol. 8 (2019) 3044–3053 [CrossRef] [Google Scholar]
- M. Gao, H. Wang, K. Hao, H. Mu, X. Zeng, Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation, J. Manuf. Process. 45 (2019) 92–99 [CrossRef] [Google Scholar]
- Z. Lei, J. Bi, P. Li, Q. Li, Y. Chen, D. Zhang, Melt flow and grain refining in ultrasonic vibration assisted laser welding process of AZ31B magnesium alloy, Opt. Laser Technol. 108 (2018) 409–417 [CrossRef] [Google Scholar]
- Z.Q. Cui, H.W. Yang, W.X. Wang, Z.F. Yan, Z.Z. Ma, B.S. Xu, H.Y. Xu, Research on fatigue crack growth behavior of AZ31B magnesium alloy electron beam welded joints based on temperature distribution around the crack tip, Eng. Fract. Mech. 133 (2015) 14–23 [CrossRef] [Google Scholar]
- J. Liao, N. Yamamoto, K. Nakata, Gas tungsten arc welding of fine-grained AZ31B magnesium alloys made by powder metallurgy, Mater. Des. 56 (2014) 460–467 [CrossRef] [Google Scholar]
- L. Liu, H. Sun, Study of flux assisted TIG welding of magnesium alloy with SiC particles in flux, Mater. Res. Innov. 12 (2008) 47–51 [CrossRef] [Google Scholar]
- E.H. Amara, A. Bendib, Modelling of vapour flow in deep penetration laser welding, J. Phys. D. Appl. Phys. 35 (2002) 272–280 [CrossRef] [Google Scholar]
- S. Zhang, G. Ma, X. Peng, Y. Xiang, Numerical simulation of the effects of bypass current on droplet transfer during AZ31B magnesium alloy DE-GMAW process based on FLUENT, Int. J. Adv. Manuf. Technol. 90 (2017) 857–863 [CrossRef] [Google Scholar]
- C. Zhang, G. Ma, J. Nie, J. Ye, Numerical simulation of AZ31B magnesium alloy in DE-GMAW welding process, Int. J. Adv. Manuf. Technol. 78 (2015) 1259–1264 [CrossRef] [Google Scholar]
- R. Baur, W.M. Steen, Laser Material Processing (third ed.) (Springer, Heidelberg, 2003) [Google Scholar]
- E. Le Guen, R. Fabbro, M. Carin, F. Coste, P. Le Masson, Analysis of hybrid Nd:Yag laser-MAG arc welding processes, Opt. Laser Technol. 43 (2011) 1155–1166 [CrossRef] [Google Scholar]
- M. Mazar Atabaki, M. Nikodinovski, P. Chenier, J. Ma, W. Liu, R. Kovacevic, Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration, Opt. Laser Technol. 59 (2014) 68–92 [CrossRef] [Google Scholar]
- W.M. Steen, Arc augmented laser processing of materials, J. Appl. Phys. 51 (1980) 5636–5641 [CrossRef] [Google Scholar]
- C. Bagger, F.O. Olsen, Review of laser hybrid welding, J. Laser Appl. 17 (2005) 2–14 [CrossRef] [Google Scholar]
- U. Dilthey, F. Lueder, A. Wieschemann, Expanded capabilities in welding of aluminium alloys with laser-MIG hybrid process, Aluminium 75 (1999) 64–75 [Google Scholar]
- T. Graf, H. Staufer, Laser-hybrid welding drives VW improvements, Weld. J. 82 (2003) 42–48 [Google Scholar]
- D. U, K. H, Prospects in laser-GMA hybrid welding of steel., Proc. 1st Int. WLT-Conference Lasers Manuf., Munich (2001) 453–65 [Google Scholar]
- Y.-P. Kim, N. Alam, H.-S. Bang, H.-S. Bang, Observation of hybrid (cw Nd:YAG laser + MIG) welding phenomenon in AA 5083 butt joints with different gap condition, Sci. Technol. Weld. Join. 11 (2006) 295–307 [CrossRef] [Google Scholar]
- J.M. Vitek, S.A. David, M.W. Richey, J. Biffin, N. Blundell, C.J. Page, Weld pool shape prediction in plasma augmented laser welded steel, Sci. Technol. Weld. Join. 6 (2001) 305–314 [CrossRef] [Google Scholar]
- S. Kirk Kanemaru, T. Sasaki, T. Sato, T. Era, M. Tanaka, Study for the mechanism of TIG-MIG hybrid welding process, Weld. World 59 (2015) 261–268 [CrossRef] [Google Scholar]
- J. Shen, Y. Li, X. Xie, M. Liu, Formation of stress cracking in an AZ61 magnesium alloy joint, Mater. Manuf. Process. 29 (2014) 188–193 [CrossRef] [Google Scholar]
- V. Subravel, G. Padmanaban, V. Balasubramanian, Effect of welding speed on microstructural characteristics and tensile properties of GTA welded AZ31B magnesium alloy, Trans. Nonferrous Met. Soc. China 24 (2014) 2776–2784 [CrossRef] [Google Scholar]
- T. Wen, S.Y. Liu, S. Chen, L.T. Liu, C. Yang, Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China (English Ed). 25 (2015) 397–404 [CrossRef] [Google Scholar]
- X. Xie, J. Shen, L. Cheng, Y. Li, Y. Pu, Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints, Mater. Des. 81 (2015) 31–38 [CrossRef] [Google Scholar]
- F. Yang, J. Zhou, R. Ding, Ultrasonic vibration assisted tungsten inert gas welding of dissimilar magnesium alloys, J. Mater. Sci. Technol. 34 (2018) 2240–2245 [CrossRef] [Google Scholar]
- H. Al-Kazzaz, M. Medraj, X. Cao, M. Jahazi, Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy: Modeling and experimental investigations, Mater. Chem. Phys. 109 (2008) 61–76 [CrossRef] [Google Scholar]
- J. Dai, X. Wang, L. Yang, J. Huang, Y. Zhang, J. Chen, Study of plasma in laser welding of magnesium alloy, Int. J. Adv. Manuf. Technol. 73 (2014) 443–447 [CrossRef] [Google Scholar]
- M. Harooni, B. Carlson, B.R. Strohmeier, R. Kovacevic, Pore formation mechanism and its mitigation in laser welding of AZ31B magnesium alloy in lap joint configuration, Mater. Des. 58 (2014) 265–276 [CrossRef] [Google Scholar]
- Z. Lei, J. Bi, P. Li, Q. Li, Y. Chen, D. Zhang, Melt flow and grain refining in ultrasonic vibration assisted laser welding process of AZ31B magnesium alloy, Opt. Laser Technol. 108 (2018) 409–417 [CrossRef] [Google Scholar]
- C.M. Lin, H.L. Tsai, C.L. Lee, D.S. Chou, J.C. Huang, Evolution of microstructures and properties of magnesium alloy weldments produced with CO2 laser process, Mater. Sci. Eng. A 548 (2012) 12–18 [CrossRef] [Google Scholar]
- D.X. Ren, L.M. Liu, Effect of adhesive induced gas on penetration and plasma behaviour in laser weld bonding of magnesium alloy, Mater. Res. Innov. 14 (2010) 405–409 [CrossRef] [Google Scholar]
- M. Sahul, M. Sahul, J. Lokaj, Effect of surface layer on the properties of AZ31 magnesium alloy welded joints, Mater. Today Proc. 3 (2016) 1150–1155 [CrossRef] [Google Scholar]
- F. Scherm, J. Bezold, U. Glatzel, Laser welding of Mg alloy MgAl3zn1 (AZ31) to Al alloy AlMg3 (AA5754) using ZnAl filler material, Sci. Technol. Weld. Join. 17 (2012) 364–367 [CrossRef] [Google Scholar]
- X. Zhang, Z. Cao, Pulsed Nd:YAG laser spot welding of an AZ31 magnesium alloy, Int. J. Adv. Manuf. Technol. 104 (2019) 3053–3063 [CrossRef] [Google Scholar]
- X. Zhang, Z. Cao, P. Zhao, Investigation on solidification cracks in pulsed laser spot welding of an AZ31 magnesium alloy, Opt. Laser Technol. 126 (2020) 106132 [CrossRef] [Google Scholar]
- M. Rethmeier, B. Kleinpeter, H. Wohlfahrt, MIG welding of magnesium alloys metallographic aspects, Weld. World 48 (2004) 28–33 [CrossRef] [Google Scholar]
- G. Song, P. Wang, L.M. Liu, Study on ac-PMIG welding of AZ31B magnesium alloy, Sci. Technol. Weld. Join. 15 (2010) 219–225 [CrossRef] [Google Scholar]
- Z.D. Zhang, L.M. Liu, G. Song, Welding characteristics of AZ31B magnesium alloy using DC-PMIG welding, Trans. Nonferrous Met. Soc. China (English Ed.) 23 (2013) 315–322 [CrossRef] [Google Scholar]
- H. Huang, J. Chen, Y.C. Lim, X. Hu, J. Cheng, Z. Feng, X. Sun, Heat generation and deformation in ultrasonic welding of magnesium alloy AZ31, J. Mater. Process. Technol. 272 (2019) 125–136 [CrossRef] [Google Scholar]
- C. Li, M. Chen, S. Yuan, L. Liu, Effect of welding speed in high speed laser-TIG welding of magnesium alloy, Mater. Manuf. Process. 27 (2012) 1424–1428 [CrossRef] [Google Scholar]
- C. Li, L. Liu, Investigation on weldability of magnesium alloy thin sheet T-joints: Arc welding, laser welding, and laser-arc hybrid welding, Int. J. Adv. Manuf. Technol. 65 (2013) 27–34 [CrossRef] [Google Scholar]
- X. Shen, G. Ma, P. Chen, Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy, Int. J. Adv. Manuf. Technol. 94 (2018) 2811–2819 [CrossRef] [Google Scholar]
- R.Z. Xu, G. Song, Z. Wang, Corrosion characteristics of AZ91 magnesium alloy weldments, Mater. Res. Innov. 13 (2009) 441–447 [CrossRef] [Google Scholar]
- R. Manti, D.K. Dwivedi, Microstructure of Al-Mg-Si weld joints produced by pulse TIG welding, Mater. Manuf. Process. 22 (2007) 57–61 [CrossRef] [Google Scholar]
- U. of A. (New Z. Zhu Tianping [Department of Chemical and Materials Engineering E-mail: tzhu004@ec.auckland.ac.nz, Z.W. [Department of M. and P.E. Chen Auckland University of Technology (New Zealand)], and G. [Department of C. and M.E. Wei University of Auckland (New Zealand)], Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy, 2008 [Google Scholar]
- Y.J. Quan, Z.H. Chen, X.S. Gong, Z. Yu, Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31, Mater. Charact. 59 (2008) 1491–1497 [CrossRef] [Google Scholar]
- L. Liu, X. Hao, Low-power laser/TIG hybrid welding process of magnesium alloy with filler wire, Mater. Manuf. Process. 25 (2010) 1213–1218 [CrossRef] [Google Scholar]
- W. Wang, P. Han, K. Qiao, T. Li, K. Wang, J. Cai, L. Wang, Effect of the rotation rate on the low-cycle fatigue behavior of friction-stir welded AZ31 magnesium alloy, Eng. Fract. Mech. 228 (2020) 106925 [CrossRef] [Google Scholar]
- W. Wang, P. Han, K. Qiao, T. Li, K. Wang, J. Cai, L. Wang, Effect of the rotation rate on the low-cycle fatigue behavior of friction-stir welded AZ31 magnesium alloy, Eng. Fract. Mech. 228 (2020) 106925 [CrossRef] [Google Scholar]
- S. Celik, R. Cakir, Effect of friction stir welding parameters on the mechanical and microstructure properties of the Al-Cu butt joint, Metals (Basel). 6 (2016) doi: 10.3390/met6060133 [CrossRef] [Google Scholar]
- L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite, Compos. Sci. Technol. 67 (2007) 605–615 [CrossRef] [Google Scholar]
- B.S. Naik, D.L. Chen, X. Cao, P. Wanjara, Texture development in a friction stir lap-welded AZ31B magnesium alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 4333–4349 [CrossRef] [Google Scholar]
- P. Gulati, D.K. Shukla, A. Gupta, M. Singh, R. Kumar, J.P. Singh, Microstructural analysis of friction stir welded Mg AZ31 alloy, Mater. Today Proc. (2020) 2–7 [Google Scholar]
- B. Rajabharathi, A.K. Lakshminarayanan, T. Ram Prabhu, Impact of friction diffusion welding parameters on the properties of rare earth containing magnesium alloy tube-tube plate welds, J. Alloys Compd. 712 (2017) 355–364 [CrossRef] [Google Scholar]
- R. Senthilraja, A.N. Sait, Optimization of the parameters of friction stir welding for AZ91D magnesium alloy using the Taguchi design, Mater. Sci. 51 (2015) 180–187 [CrossRef] [Google Scholar]
- P. Gulati, D.K. Shukla, A. Gupta, M. Singh, R. Kumar, J.P. Singh, Microstructural analysis of friction stir welded Mg AZ31 alloy, Mater. Today Proc. (2020) 2–7 [Google Scholar]
- M. Mirzaei, P. Asadi, A. Fazli, Effect of tool pin profile on material flow in double shoulder friction stir welding of AZ91 magnesium alloy, Int. J. Mech. Sci. 183 (2020) 105775 [CrossRef] [Google Scholar]
- G. Li, L. Zhou, S. Luo, F. Dong, N. Guo, Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy, Mater. Sci. Eng. A 776 (2020) 138953 [CrossRef] [Google Scholar]
- S.J. Sun, J.S. Kim, W.G. Lee, J.Y. Lim, Y. Go, Y.M. Kim, Influence of friction stir welding on mechanical properties of butt joints of AZ61 magnesium alloy, Adv. Mater. Sci. Eng. 2017 (2017) doi: 10.1155/2017/7381403 [Google Scholar]
- F. Baradarani, A. Motafapour, M. Shalvandi, Effect of ultrasonic assisted friction stir welding on microstructure and mechanical properties of AZ91−C magnesium alloy, Trans. Nonferrous Met. Soc. China (English Ed.) 29 (2019) 2514–2522 [CrossRef] [Google Scholar]
- S.H. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, P. Wanjara, Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 323–336 [CrossRef] [Google Scholar]
- G. Li, L. Zhou, S. Luo, F. Dong, N. Guo, Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy, Mater. Sci. Eng. A 776 (2020) 138953 [CrossRef] [Google Scholar]
- G. Li, L. Zhou, J. Zhang, S. Luo, N. Guo, Macrostructure, microstructure and mechanical properties of bobbin tool friction stir welded ZK60 Mg alloy joints, J. Mater. Res. Technol. 9 (2020) 9348–9361 [CrossRef] [Google Scholar]
- G. Li, L. Zhou, J. Zhang, S. Luo, N. Guo, Macrostructure, microstructure and mechanical properties of bobbin tool friction stir welded ZK60 Mg alloy joints, J. Mater. Res. Technol. 9 (2020) 9348–9361 [CrossRef] [Google Scholar]
- P. Asadi, M.K.B. Givi, M. Akbari, Microstructural simulation of friction stir welding using a cellular automaton method: A microstructure prediction of AZ91 magnesium alloy, Int. J. Mech. Mater. Eng. 10 (2015) doi: 10.1186/s40712-015-0048-5 [CrossRef] [Google Scholar]
- H. Bin Chen, K. Yan, T. Lin, S. Ben Chen, C.Y. Jiang, Y. Zhao, The investigation of typical welding defects for 5456 aluminum alloy friction stir welds, Mater. Sci. Eng. A 433 (2006) 64–69 [CrossRef] [Google Scholar]
- F. Baradarani, A. Mostafapour, M. Shalvandi, Effect of ultrasonic assisted friction stir welding on microstructure and mechanical properties of AZ91−C magnesium alloy, Trans. Nonferrous Met. Soc. China (English Ed.) 29 (2019) 2514–2522 [CrossRef] [Google Scholar]
- G.K. Padhy, C.S. Wu, S. Gao, Auxiliary energy assisted friction stir welding − status review, Sci. Technol. Weld. Join. 20 (2015) 631–649 [CrossRef] [Google Scholar]
- Z. Liu, X. Meng, S. Ji, Z. Li, L. Wang, Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding, J. Manuf. Process. 31 (2018) 552–559 [CrossRef] [Google Scholar]
- Z. Liu, X. Meng, S. Ji, Z. Li, L. Wang, Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding, J. Manuf. Process. 31 (2018) 552–559 [CrossRef] [Google Scholar]
- A.H. Feng, D.L. Chen, Z.Y. Ma, W.Y. Ma, R.J. Song, Microstructure and strain hardening of a friction stir welded high-strength Al-Zn-Mg alloy, Acta Metall. Sin. (English Lett.) 27 (2014) 723–729 [CrossRef] [Google Scholar]
- S.H. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, P. Wanjara, Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties, Metall. Mater. Trans. A 44 (2013) 323–336 [CrossRef] [Google Scholar]
- B.S. Naik, D.L. Chen, X. Cao, P. Wanjara, Microstructure and fatigue properties of a friction stir lap welded magnesium alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 3732–3746 [CrossRef] [Google Scholar]
- F. Pan, A. Xu, D. Deng, J. Ye, X. Jiang, A. Tang, Y. Ran, Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn, Mater. Des. 110 (2016) 266–274 [CrossRef] [Google Scholar]
- S. Borle, H. Izadi, A.P. Gerlich, Influence of welding parameters on stir zone microstructures during friction stir welding of magnesium alloys, Can. Metall. Q. 51 (2012) 262–268 [CrossRef] [Google Scholar]
- B. Rajabharathi, A.K. Lakshminarayanan, T. Ram Prabhu, Impact of friction diffusion welding parameters on the properties of rare earth containing magnesium alloy tube-tube plate welds, J. Alloys Compd. 712 (2017) 355–364 [CrossRef] [Google Scholar]
- S. Satonaka, C. Iwamoto, G.I. Murakami, Y. Matsumoto, Resistance spot welding of magnesium alloy sheets with cover plates, Weld. World 56 (2012) 44–50 [CrossRef] [Google Scholar]
- M. Mirzaei, P. Asadi, A. Fazli, Effect of tool pin profile on material flow in double shoulder friction stir welding of AZ91 magnesium alloy, Int. J. Mech. Sci. 183 (2020) 105775 [CrossRef] [Google Scholar]
- P. Asadi, M.K.B. Givi, M. Akbari, Microstructural simulation of friction stir welding using a cellular automaton method: a microstructure prediction of AZ91 magnesium alloy, Int. J. Mech. Mater. Eng. 10 (2015), doi: 10.1186/s40712-015-0048-5 [CrossRef] [Google Scholar]
- L.C. Campanelli, U.F.H. Suhuddin, A.Í.S. Antonialli, J.F. Dos Santos, N.G. De Alcântara, C. Bolfarini, Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds, J. Mater. Process. Technol. 213 (2013) 515–521 [CrossRef] [Google Scholar]
- J. Chen, R. Ueji, H. Fujii, Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control, Mater. Des. 76 (2015) 181–189 [CrossRef] [Google Scholar]
- S.H. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, P. Wanjara, Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties, Metall. Mater. Trans. A 44 (2013) 323–336 [CrossRef] [Google Scholar]
- L. Commin, M. Dumont, R. Rotinat, F. Pierron, J.E. Masse, L. Barrallier, Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds, Mater. Sci. Eng. A 551 (2012) 288–292 [CrossRef] [Google Scholar]
- A. Dhanapal, S. Rajendra Boopathy, V. Balasubramanian, Corrosion behaviour of friction stir welded AZ61A magnesium alloy welds immersed in NaCl solutions, Trans. Nonferrous Met. Soc. China (English Ed.) 22 (2012) 793–802 [CrossRef] [Google Scholar]
- A. Forcellese, M. Martarelli, M. Simoncini, Effect of process parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys, Int. J. Adv. Manuf. Technol. 85 (2016) 595–604 [CrossRef] [Google Scholar]
- P. Gulati, D.K. Shukla, A. Gupta, Defect formation analysis of friction stir welded magnesium AZ31B alloy, Mater. Today Proc. 4 (2017) 1005–1012 [CrossRef] [Google Scholar]
- A.F. Hasan, CFD modelling of friction stir welding (FSW) process of AZ31 magnesium alloy using volume of fluid method, J. Mater. Res. Technol. 8 (2019) 1819–1827 [CrossRef] [Google Scholar]
- J. Hiscocks, B.J. Diak, A.P. Gerlich, M.R. Daymond, Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80, Mater. Charact. 122 (2016) 22–29 [CrossRef] [Google Scholar]
- W. Li, P.L. Niu, S.R. Yan, V. Patel, Q. Wen, Improving microstructural and tensile properties of AZ31B magnesium alloy joints by stationary shoulder friction stir welding, J. Manuf. Process. 37 (2019) 159–167 [CrossRef] [Google Scholar]
- S. Mironov, Y.S. Sato, H. Kokawa, Influence of welding temperature on material flow during friction stir welding of AZ31 magnesium alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50 (2019) 2798–2806 [CrossRef] [Google Scholar]
- F. Pan, A. Xu, D. Deng, J. Ye, X. Jiang, A. Tang, Y. Ran, Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn, Mater. Des. 110 (2016) 266–274 [CrossRef] [Google Scholar]
- K. Singh, G. Singh, H. Singh, Microstructure and mechanical behaviour of friction-stir-welded magnesium alloys: As-Welded and post weld heat treated, Mater. Today Commun. 20 (2019) 100600 [CrossRef] [Google Scholar]
- X. Xie, J. Shen, F. Gong, D. Wu, T. Zhang, X. Luo, Y. Li, Effects of dwell time on the microstructures and mechanical properties of water bath friction stir spot-welded AZ31 magnesium alloy joints, Int. J. Adv. Manuf. Technol. 82 (2016) 75–83 [CrossRef] [Google Scholar]
- S.D. Ji, Z.W. Li, L. Ma, Y.M. Yue, S.S. Gao, Investigation of ultrasonic assisted friction stir spot welding of magnesium alloy to aluminum alloy, Strength Mater. 48 (2016) 2–7 [CrossRef] [Google Scholar]
- A. Macwan, D.L. Chen, Ultrasonic spot welding of a rare-earth containing ZEK100 magnesium alloy: effect of welding energy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47 (2016) 1686–1697 [CrossRef] [Google Scholar]
- R. Qiu, N. Wang, H. Shi, K. Zhang, S. Satonaka, Non-parametric effects on pore formation during resistance spot welding of magnesium alloy, Sci. Technol. Weld. Join. 19 (2014) 231–234 [CrossRef] [Google Scholar]
- X. Wei Yang, W. Yuan Feng, W. Ya Li, X. Rong Dong, Y. Xin Xu, Q. Chu, S. Tian Yao, Microstructure and properties of probeless friction stir spot welding of AZ31 magnesium alloy joints, Trans. Nonferrous Met. Soc. China (English Ed.) 29 (2019) 2300–2309 [CrossRef] [Google Scholar]
- W. Zhou, T.Z. Long, C.K. Mark, Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D, Mater. Sci. Technol. 23 (2007) 1294–1299 [CrossRef] [Google Scholar]
- X. Xie, J. Shen, L. Cheng, Y. Li, Y. Pu, Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints, Mater. Des. 81 (2015) 31–38 [CrossRef] [Google Scholar]
- J. Liao, N. Yamamoto, K. Nakata, Gas tungsten arc welding of fine-grained AZ31B magnesium alloys made by powder metallurgy, Mater. Des. 56 (2014) 460–467 [CrossRef] [Google Scholar]
- C.-M. Lin, H.-L. Tsai, C.-L. Lee, D.-S. Chou, J.-C. Huang, Evolution of microstructures and properties of magnesium alloy weldments produced with CO2 laser process, Mater. Sci. Eng. A 548 (2012) 12–18 [CrossRef] [Google Scholar]
- M. Sahul, M. Sahul, J. Lokaj, Effect of surface layer on the properties of AZ31 magnesium alloy welded joints, Mater. Today Proc. 3 (2016) 1150–1155 [CrossRef] [Google Scholar]
- J. Chen, R. Ueji, H. Fujii, Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control, Mater. Des. 76 (2015) 181–189 [CrossRef] [Google Scholar]
- W. Li, P.L. Niu, S.R. Yan, V. Patel, Q. Wen, Improving microstructural and tensile properties of AZ31B magnesium alloy joints by stationary shoulder friction stir welding, J. Manuf. Process. 37 (2019) 159–167 [CrossRef] [Google Scholar]
- S. Niknejad, L. Liu, M.Y. Lee, S. Esmaeili, N.Y. Zhou, Resistance spot welding of AZ series magnesium alloys: Effects of aluminum content on microstructure and mechanical properties, Mater. Sci. Eng. A 618 (2014) 323–334 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.