Open Access
Manufacturing Rev.
Volume 8, 2021
Article Number 32
Number of page(s) 15
Published online 21 December 2021
  1. J.F. Rodríguez, J.P. Thomas, J.E. Renaud, Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation, Rapid Prototyp. J. 7 (2001) 148-158 [Google Scholar]
  2. S.-H. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid. prototyp. J. 8 (2002) 248-257 [Google Scholar]
  3. B. Akhoundi, A.H. Behravesh, Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products, Exp. Mech. 59 (2019) 883–897 [CrossRef] [Google Scholar]
  4. C. Ziemian, M. Sharma, S. Ziemian, Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling, Mech. Eng. 23, (2012) 159–180 [Google Scholar]
  5. O.S. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, B.A. Pregger, Effect of layer orientation on mechanical properties of rapid prototyped samples, Mater. Manufactur. Process. 15 (2000) 107–122 [CrossRef] [Google Scholar]
  6. A. Bellini, S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyp. J. 9 (2003) 252-264 [Google Scholar]
  7. Q. Sun, G.M. Rizvi, C.T. Bellehumeur, P. Gu, Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp. J. 14 (2008) 72-80 [Google Scholar]
  8. F. Yang, R. Pitchumani, Healing of thermoplastic polymers at an interface under nonisothermal conditions, Macromolecules 35 (2002) 3213–3224 [CrossRef] [Google Scholar]
  9. A. García-Domínguez, J. Claver, A.M. Camacho, M.A. Sebastin, Considerations on the applicability of test methods for mechanical characterization of materials manufactured by FDM, Materials 13 (2020) 28 [Google Scholar]
  10. G.P. Greeff, M. Schilling, Closed loop control of slippage during filament transport in molten material extrusion, Addit. Manufactur. 14 (2017) 31–38 [CrossRef] [Google Scholar]
  11. V.E. Kuznetsov, A.N. Solonin, A. Tavitov, O. Urzhumtsev, A. Vakulik, Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process, Rapid Prototyp. J. 26 (2020) 107-121 [Google Scholar]
  12. G.P. Greeff, M. Schilling, Single print optimisation of fused filament fabrication parameters, Int. J. Adv. Manufactur. Technol. 99 (2018) 845–858 [CrossRef] [Google Scholar]
  13. J.Y. Wang, D.D. Xu, W. Sun, S.M. Du, J.J. Guo, G.J. Xu, Effects of nozzle-bed distance on the surface quality and mechanical properties of fused filament fabrication parts, IOP Conf. Ser.: Mater. Sci. Eng. 479 (2019) 012094 [CrossRef] [Google Scholar]
  14. T.J. Coogan, D.O. Kazmer, Bond and part strength in fused deposition modeling, Rapid Prototyp. 23 (2017) 414-422 [Google Scholar]
  15. P. Han, A. Tofangchi, A. Deshpande, S. Zhang, K. Hsu, An approach to improve interface healing in FFF-3D printed Ultem 1010 using laser pre-deposition heating, Proc. Manufactur. 34 (2019) 672–677 [CrossRef] [Google Scholar]
  16. J. Allum, J. Kitzinger, Y. Li, V.V. Silberschmidt, A. Gleadall, ZigZagZ: improving mechanical performance in extrusion additive manufacturing by nonplanar toolpaths, Addit. Manufactur. 38 (2021) 101715 [CrossRef] [Google Scholar]
  17. L. Fang, Y. Yan, O. Agarwal, J.E. Seppala, K.J. Hemker, S.H. Kang, Processingstructure-property relationships of bisphenol-A-polycarbonate samples prepared by fused filament fabrication, Addit. Manufactur. 35 (2020) 101285 [CrossRef] [Google Scholar]
  18. A. Lepoivre, N. Boyard, A. Levy, V. Sobotka, Heat transfer and adhesion study for the FFF additive manufacturing process, Proc. Manufactur. 47 (2020) 948–955 [CrossRef] [Google Scholar]
  19. J. Huether, P. Rupp, I. Kohlschreiber, K.A. Weidenmann, An enhanced method to determine the Young's modulus of technical single fibres by means of high resolution digital image correlation, Measur. Sci. Technol. 29 (2018) 045601 [CrossRef] [Google Scholar]
  20. T.J. Coogan, D.O. Kazmer, Healing simulation for bond strength prediction of FDM, Rapid Prototyp. J. 23 (2017) 551-561 [Google Scholar]
  21. S. Prager, M. Tirrell, The healing process at polymer-polymer interfaces, J. Chem. Phys. 75 (1981) 5194–5198 [CrossRef] [Google Scholar]
  22. A.M. Peterson, Review of acrylonitrile butadiene styrene in fused filament fabrication: a plastics engineering-focused perspective, Addit. Manufactur. 27 (2019) 363–371 [CrossRef] [Google Scholar]
  23. C. Casavola, A. Cazzato, V. Moramarco, C. Pappalettere, Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory, Mater. Des. 90 (2016) 453–458 [CrossRef] [Google Scholar]
  24. J. Allum, A. Gleadall, V.V. Silberschmidt, Fracture of 3D-printed polymers: crucial role of filament-scale geometric features, Eng. Fract. Mech. 224 (2020) 106818 [CrossRef] [Google Scholar]
  25. R. Schnell, M. Stamm, C. Creton, Mechanical properties of homopolymer interfaces: Transition from simple pullout to crazing with increasing interfacial width, Macromolecules 32 (1999) 3420–3425 [CrossRef] [Google Scholar]
  26. J.J. Schwartz, J. Hamel, T. Ekstrom, L. Ndagang, A.J. Boydston, Not all PLA filaments are created equal: an experimental investigation, Rapid Prototyp. J. 26 (2020) 1263-1276 [Google Scholar]
  27. S.F. Costa, F.M. Duarte, J.A. Covas, Estimation of filament temperature and adhesion development in fused deposition techniques, J. Mater. Process. Technol. 245 (2017) 167–179 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.