Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 17
Number of page(s) 11
DOI https://doi.org/10.1051/mfreview/2022013
Published online 01 July 2022
  1. D. Nguyen et al., Online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy using ANFIS-GPR hybrid algorithm and Taguchi analysis, Precis. Eng. 55 (2019) 275–292 [CrossRef] [Google Scholar]
  2. Z. Tao et al., FE modeling of a complete warm-bending process for optimal design of heating stages for the forming of large-diameter thin-walled Ti–6Al–4V tubes, Manufactur. Rev. 4 (2017) 8 [CrossRef] [EDP Sciences] [Google Scholar]
  3. J.O. Obiko, F.M. Mwema, M.O. Bodunrin, Validation and optimization of cutting parameters for Ti-6Al-4V turning operation using DEFORM 3D simulations and Taguchi method, Manufactur. Rev. 8 (2021) 5 [CrossRef] [EDP Sciences] [Google Scholar]
  4. J. Ju et al., Evolution of the microstructure and optimization of the tensile properties of the Ti–6Al–4V alloy by selective laser melting and heat treatment, Mater. Sci. Eng. A 802 (2021) 140673 [CrossRef] [Google Scholar]
  5. S.R. Oke et al., An overview of conventional and non-conventional techniques for machining of titanium alloys, Manufactur. Rev. 7 (2020) 34 [CrossRef] [EDP Sciences] [Google Scholar]
  6. V.V.K. Lakshmi et al., Parametric optimization while turning Ti-6Al-4V alloy in Mist-MQCL (Green environment) using the DEAR method, Manufactur. Rev. 7 (2020) 38 [CrossRef] [EDP Sciences] [Google Scholar]
  7. N. Qian et al., Axial rotating heat-pipe grinding wheel for eco–benign machining: a novel method for dry profile-grinding of Ti–6Al–4V alloy, J. Manufactur. Process. 56 (2020) 216–227 [CrossRef] [Google Scholar]
  8. B. Zhao et al., Characterisation of the wear properties of a single-aggregated cubic boron nitride grain during Ti–6Al–4V alloy grinding, Wear 452-453 (2020) 203296 [CrossRef] [Google Scholar]
  9. H. Luo et al., Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing, Ultramicroscopy 181 (2017) 165–172 [CrossRef] [Google Scholar]
  10. L. Nagdeve, V.K. Jain, J. Ramkumar, Nanofinishing of freeform/sculptured surfaces: state-of-the-art, Manufactur. Rev. 5 (2018) 6 [CrossRef] [EDP Sciences] [Google Scholar]
  11. V. Kumar, R. Kumar, H. Kumar, Rheological characterization of vegetable-oil-based magnetorheological finishing fluid, Mater. Today 18 (2019) 3526–3531 [Google Scholar]
  12. M. Ashtiani, S.H. Hashemabadi, A. Ghaffari, A review on the magnetorheological fluid preparation and stabilization, J. Magn. Magn. Mater. 374 (2015) 716–730 [CrossRef] [Google Scholar]
  13. A.K. Bastola, M. Hossain, A review on magneto-mechanical characterizations of magnetorheological elastomers, Compos. Part B: Eng. 200 (2020) 108348 [CrossRef] [Google Scholar]
  14. M. Givi, A. Fadaei Tehrani, A. Mohammadi, Polishing of the aluminum sheets with magnetic abrasive finishing method, Int. J. Adv. Manufactur. Technol. 61 (2012) 989–998 [CrossRef] [Google Scholar]
  15. H. Barman, S. Hegde, Comprehensive review of parameters influencing the performance of magnetorheological elastomers embedded in beams, Mater. Today 26 (2020) 2130–2135 [Google Scholar]
  16. G. Parameswari et al., Experimental investigations into nanofinishing of Ti6Al4V flat disc using magnetorheological finishing process, Int. J. Adv. Manufactur. Technol. 100 (2019) 1055–1065 [Google Scholar]
  17. H. Luo et al., An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing, Appl. Surf. Sci. 444 (2018) 569–577 [CrossRef] [Google Scholar]
  18. C. Kumari, S.K. Chak, A review on magnetically assisted abrasive finishing and their critical process parameters, Manufactur. Rev. 5 (2018) 13 [CrossRef] [EDP Sciences] [Google Scholar]
  19. S. Rosenfeldt et al., Chapter 5 – Self-assembly of magnetic iron oxide nanoparticles into cuboidal superstructures, in Novel Magnetic Nanostructures, edited by N. Domracheva, M. Caporali, E. Rentschler (Elsevier, 2018), pp. 165–189 [CrossRef] [Google Scholar]
  20. H. Guo et al., Effects of pressure and shear stress on material removal rate in ultra-fine polishing of optical glass with magnetic compound fluid slurry, J. Mater. Process. Technol. 214 (2014) 2759–2769 [CrossRef] [Google Scholar]
  21. O.M. Olabanji, K. Mpofu, Appraisal of conceptual designs: coalescing fuzzy analytic hierarchy process (F-AHP) and fuzzy grey relational analysis (F-GRA), Res. Eng. 9 (2021) 100194 [Google Scholar]
  22. E. Jiaqiang et al., Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis, Energy 211 (2020) 118596 [CrossRef] [Google Scholar]
  23. P. Muthu, Multi objective optimization of wear behaviour of Aluminum MMCs using Grey-Taguchi method, Manufactur. Rev. 7 (2020) 16 [CrossRef] [EDP Sciences] [Google Scholar]
  24. A. Roozbahani, H. Ghased, M. Hashemy Shahedany, Inter-basin water transfer planning with grey COPRAS and fuzzy COPRAS techniques: a case study in Iranian Central Plateau, Sci. Total Environ. 726 (2020) 138499 [CrossRef] [Google Scholar]
  25. H.K. Latha, P. Usha Sri, N. Seetharamaiah, Design and manufacturing aspects of magneto-rheological fluid (MRF) clutch, Mater. Today 4 (2017) 1525–1534 [Google Scholar]
  26. F. Wang et al., Rheological properties and sedimentation stability of magnetorheological fluid based on multi-walled carbon nanotubes/cobalt ferrite nanocomposites, J. Mol. Liquids 324 (2021) 115103 [CrossRef] [Google Scholar]
  27. A. Fakhar, R. Kolahchi, Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates, Int. J. Mech. Sci. 144 (2018) 788–799 [CrossRef] [Google Scholar]
  28. J. Zheng et al., The induced field of magnetized wall on the static normal force of magnetorheological fluids, J. Magn. Magn. Mater. 504 (2020) 166652 [CrossRef] [Google Scholar]
  29. A. Pal, S.S. Chatha, H.S. Sidhu, Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid, Tribol. Int. 151 (2020) 106508 [CrossRef] [Google Scholar]
  30. C.Y. Chan, W.B. Lee, H. Wang, Enhancement of surface finish using water-miscible nano-cutting fluid in ultra-precision turning, Int. J. Mach. Tools Manufact. 73 (2013) 62–70 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.