Open Access
Manufacturing Rev.
Volume 9, 2022
Article Number 18
Number of page(s) 12
Published online 04 July 2022
  1. C. Panseri, Manuale di Fonderia D’alluminio, U. Hoepli, Milan, IT (1966) pp. 550–609, in Italian [Google Scholar]
  2. J. Campbell, Castings, Elsevier Butterworth-Heinemann, Oxford, UK (2003) pp. 70–177 [CrossRef] [Google Scholar]
  3. J.T. Black, R.A. Kohser, DeGarmo’s materials and processes in manufacturing (John Wiley & Sons, 2021), pp. 106–124 [Google Scholar]
  4. G.W. Mugica, D.O. Tovio, J.C. Cuyas, A.C. González, Effect of porosity on the tensile properties of low ductility aluminum alloys, Mater. Res. 7 (2004) 221–229 [CrossRef] [Google Scholar]
  5. J. M. Boileau, J. E. Allison, The effect of porosity size on the fatigue properties in a cast 319 aluminum alloy, SAE Transact. 110 (2001) 648–659 [Google Scholar]
  6. H.R. Ammar, A.M. Samuel, F.H. Samuel, Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum-silicon casting alloys, Int. J. Fatigue 30 (2008) 1024–1035 [CrossRef] [Google Scholar]
  7. E.J. Whittenberger, F.N. Rhines, Origin of porosity in castings of magnesium-aluminum and other alloys, JOM 4 (1952) 409–420 [CrossRef] [Google Scholar]
  8. H.S. Whitesell, R.A. Overfelt, Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247, Mater. Sci. Eng. A 318 (2001) 264–276 [CrossRef] [Google Scholar]
  9. Z. Lei, L. Hengcheng, P. Ye, W. Qigui, S. Guoxiong, In-situ observation of porosity formation during directional solidification of Al-Si Casting Alloys, Res. Dev. (2011) AF201101005. htm [Google Scholar]
  10. D. Concer, P.V.P. Marcondes, Experimental and numerical simulation study of porosity on high-pressure aluminum die casting process, J. Braz. Soc. Mech. Sci. 39 (2017) 3079–3088 [CrossRef] [Google Scholar]
  11. S. Mozammil, J. Karloopia, P.K. Jha, Investigation of porosity in Al casting, Mater. Today: Proc. 5 (2018) 17270–17276 [CrossRef] [Google Scholar]
  12. V. Khalajzadeh, D.D. Goettsch, C. Beckermann, Real-time X-ray radiography and computational modeling of shrinkage porosity formation in aluminum alloy castings, Metall. Mater. Trans. A 50 (2019) 757–771 [CrossRef] [Google Scholar]
  13. K. Kubo, R.D. Pehlke, Mathematical modeling of porosity formation in solidification, Metall. Trans. B 16 (1985) 359–366 [CrossRef] [Google Scholar]
  14. D. Sui, Z. Cui, R. Wang, S. Hao, Q. Han, Effect of cooling process on porosity in the aluminum alloy automotive wheel during low-pressure die casting, Int. J. Metalcast. 10 (2016) 32–42 [CrossRef] [Google Scholar]
  15. A.S. Sabau, S. Viswanathan, Microporosity prediction in aluminum alloy castings, Metall. Mater. Trans. B 33 (2002) 243–255 [CrossRef] [Google Scholar]
  16. J. Jakumeit, S. Jana, B. Böttger, R. Laqua, M.Y. Jouani, A. Bührig-Polaczek, Simulation-based prediction of micro-shrinkage porosity in aluminum casting: fully-coupled numerical calculation vs. criteria functions, IOP Conf. Ser. Mater. Sci. 27 (2012) 012066 [Google Scholar]
  17. G.O. Verran, R.P.K. Mendes, L.V.O. Dalla Valentina, DOE applied to optimization of aluminum alloy die castings, J. Mater. Process. Tech. 200 (2008) 120–125 [CrossRef] [Google Scholar]
  18. U.A. Dabade, R.C. Bhedasgaonkar, Casting defect analysis using design of experiments (DoE) and computer aided casting simulation technique, Proc. Cirp 7 (2013) 616–621 [CrossRef] [Google Scholar]
  19. D.R. Gunasegaram, D.J. Farnsworth, T.T. Nguyen, Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments, J. Mater. Process. Tech. 209 (2009) 1209–1219 [CrossRef] [Google Scholar]
  20. V.D. Tsoukalas, Optimization of porosity formation in AlSi9Cu3 pressure die castings using genetic algorithm analysis, Mater. Des. 29 (2008) 2027–2033 [CrossRef] [Google Scholar]
  21. V.S. Gondkar, K.H. Inamdar, Optimization of casting process parameters through simulation, Int. J. Appl. Innov. Eng. Manag. 3 (2014) 276–283 [Google Scholar]
  22. F. Chiesat, R. Fuoco, J.E. Gruzleski, Porosity distribution in directionally solidified test bars sand cast from a controlled A356 melt, Cast Met. 7 (1994) 113–122 [CrossRef] [Google Scholar]
  23. Z. Sun, H. Hu, X. Chen, Numerical optimization of gating system parameters for a magnesium alloy casting with multiple performance characteristics, J. Mater. Process. Technol. 199 (2008) 256–264 [CrossRef] [Google Scholar]
  24. Z. Gao, W. Jie, Y. Liu, H. Luo, Solidification modelling for coupling prediction of porosity and segregation, Acta Mater. 127 (2017) 277–286 [CrossRef] [Google Scholar]
  25. W.E. Warriner, C.A. Monroe, Locating solidification hot spots and feeder positions in casting geometries by image analysis, Int. J. Metalcast. 12 (2018) 224–234 [CrossRef] [Google Scholar]
  26. S.L. Nimbulkar, R.S. Dalu, Design optimization of gating and feeding system through simulation technique for sand casting of wear plate, Perspect. Sci. 8 (2016) 39–42 [CrossRef] [Google Scholar]
  27. M. Tiryakioğlu, E. Tiryakioğlu, A comparative study of optimum feeder models for castings, Int. J. Cast Metal. Res. 14 (2001) 25–30 [CrossRef] [Google Scholar]
  28. P.V. Kadam, B.S. Kamble, Optimization of feeder design using virtual simulation technique − a case study, Int. Res. J. Eng. Tech. 3 (2016) 1334–1339 [Google Scholar]
  29. B. Ravi, D. Joshi, Feedability analysis and optimisation driven by casting simulation, Indian Foundry J. 53 (2007) 71–78 [Google Scholar]
  30. F. Grosselle, G. Timelli, F. Bonollo, R. Molina, Correlation between microstructure and mechanical properties of Al-Si diecast engine blocks, Metall. Sci. Technol. 27 (2009) [Google Scholar]
  31. Y. Birol, Impact of grain size on mechanical properties of AlSi7Mg0. 3 alloy, Mater. Sci. Eng. A 559 (2013) 394–400 [CrossRef] [Google Scholar]
  32. L. Ceschini, A. Morri, S. Toschi, S. Johansson, S. Seifeddine, Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature, Mater. Sci. Eng. A 648 (2015) 340–349 [CrossRef] [Google Scholar]
  33. A. Vergnano, U. Bergamini, D. Bianchi, P. Veronesi, R. Spagnolo, F. Leali, Simulation and experimental validation of Secondary Dendrite Arm Spacing for AlSi7Mg0.3 chassis parts in Low Pressure Die Casting, In: Advances on Mechanics, Design Engineering and Manufacturing III, Lect. Notes Mech. Eng. (2021) 28–33 [Google Scholar]
  34. L.A. Dobrzański, W. Borek, R. Maniara, Influence of the crystallization condition on Al-Si-Cu casting alloys structure, J. Achiev. Mater. Manuf. 18 (2006) 211–214 [Google Scholar]
  35. L.Y. Zhang, Y.H. Jiang, Z. Ma, S.F. Shan, Y.Z. Jia, C.Z. Fan, W.K. Wang, Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy, J. Mater. Process. Tech. 207 (2008) 107–111 [CrossRef] [Google Scholar]
  36. A.F. Ferreira, J.A. Castro, L.D.O. Ferreira, Predicting secondary-dendrite arm spacing of the Al-4.5 wt% Cu alloy during unidirectional solidification, Mater. Res. 20 (2017) 68–75 [Google Scholar]
  37. J.H. Lee, H.S. Kim, S.I. Hong, C.W. Won, S.S. Cho, B.S. Chun, Effect of die geometry on the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy and numerical analysis of the cooling behaviour, J. Mater. Process. Tech. 96 (1999) 188–197 [CrossRef] [Google Scholar]
  38. H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J.H. Sokolowski, The effect of average cooling rates on the microstructure of the Al-20% Si high pressure die casting alloy used for monolithic cylinder blocks, J. Mater. Process. Tech. 203 (2008) 333–341 [CrossRef] [Google Scholar]
  39. S. Farahany, M.H. Idris, A. Ourdjini, F. Faris, H. Ghandvar, Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis, J. Therm. Anal. Calorim. 119 (2015) 1593–1601 [CrossRef] [Google Scholar]
  40. H. Hu, F. Chen, X. Chen, Y.L. Chu, P. Cheng, Effect of cooling water flow rates on local temperatures and heat transfer of casting dies, J. Mater. Process. Tech. 148 (2004) 57–67 [CrossRef] [Google Scholar]
  41. L. Zhang, L. Li, H. Ju, B. Zhu, Inverse identification of interfacial heat transfer coefficient between the casting and metal mold using neural network, Energy Convers. Manag. 51 (2010) 1898–1904 [CrossRef] [Google Scholar]
  42. A.N. Vasileiou, G.C. Vosniakos, D.I. Pantelis, On the feasibility of determining the heat transfer coefficient in casting simulations by genetic algorithms, Proc. Manuf. 11 (2017) 509–516 [Google Scholar]
  43. S. Pedrazzi, A. Vergnano, G. Allesina, P. Veronesi, F. Leali, P. Tartarini, A. Muscio, A simple test method for measurement of the interface thermal resistance of coated and uncoat-ed metal surfaces, J. Phys. Conf. Ser. 1599 (2020) 012049 [CrossRef] [Google Scholar]
  44. J.H. Lee, H.S. Kim, C.W. Won, B. Cantor, Effect of the gap distance on the cooling behavior and the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy, Mater. Sci. Eng. A 338 (2002) 182–190 [CrossRef] [Google Scholar]
  45. P. Schwingenschlögl, P. Niederhofer, M. Merklein, Investigation on basic friction and wear mechanisms within hot stamping considering the influence of tool steel and hardness, Wear 426 (2019) 378–389 [CrossRef] [Google Scholar]
  46. P. Niederhofer, K. Eger, P. Schwingenschlögl, M. Merklein, Properties of tool steels for application in hot stamping, Steel Res. Int. 91 (2020) 1900422 [CrossRef] [Google Scholar]
  47. R.W. Lewis, K. Ravindran, Finite element simulation of metal casting, Int. J. Numer. Meth. Eng. 47 (2000) 29–59 [CrossRef] [Google Scholar]
  48. Z. Guo, N. Saunders, A.P. Miodownik, J.P. Schillé, Modelling of materials properties and behaviour critical to casting simulation. Mater. Sci. Eng. A 413 (2005) 465–469 [CrossRef] [Google Scholar]
  49. B. Ravi, Casting simulation and optimisation: benefits, bottlenecks and best practices, Indian Foundry J. 54 (2008) 47 [Google Scholar]
  50. K.C. Sarma, H. Adeli, Life‐cycle cost optimization of steel structures, Int. J. Numer. Meth. Eng. 55 (2002) 1451–1462 [CrossRef] [Google Scholar]
  51. C. Favi, M. Germani, M. Mandolini, Analytical cost estimation model in high pressure die casting, Procedia Manuf. 11 (2017) 526–535 [CrossRef] [Google Scholar]
  52. M.B. Ndaliman, P.A. Pius, Behavior of aluminum alloy castings under different pouring temperatures and speeds, Leonardo El. J. Pract. Technol. 6 (2007) 71–80 [Google Scholar]
  53. X.M. Zhang, W.P. Chen, Review on corrosion-wear resistance performance of materials in molten aluminum and its alloys, Trans. Nonferr. Metal. Soc. 25 (2015) 1715–1731 [CrossRef] [Google Scholar]
  54. ISO, UNI EN ISO 683-1: 2018 Heat-treatable steels, alloy steels and free-cutting steels [Google Scholar]
  55. Formadur® 2311 data sheet, Bonomi Acciai Srl, Lumezzane, Italy, accessed at on April 29, 2022 [Google Scholar]
  56. D. Klobčar, J. Tušek, B. Taljat, Thermal fatigue of materials for die-casting tooling, Mater. Sci. Eng. A 472 (2008) 198–207 [CrossRef] [Google Scholar]
  57. S. Naimi, S.M. Hosseini, Tool steels in die-casting utilization and increased mold life, Adv. Mech. Eng. 7 (2015) 286071 [CrossRef] [Google Scholar]
  58. Thermodur® 2343 EFS Superclean data sheet, Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG, Witten, Germany, accessed at on March 1, 2021 [Google Scholar]
  59. Thermodur® 2383 Supercool Product Brochure, Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG, Witten, Germany, accessed at on March 1, 2021 [Google Scholar]
  60. P. Niederhofer, F. van Soest, M. Gürcan, H.-G. Krull, T. Schneiders, Alternative alloying concepts of hot work tool steels for application in die casting, in Proceedings of the High Tech Die Casting (2021) [Google Scholar]
  61. A. Vergnano, E. Brambilla, G. Bonfiglioli, Efficiency and reliability of gravity die casting models for simulation based design. In: Advances on Mechanics, Design Engineering and Manufacturing II, Lect. Notes Mech. Eng. (2019), pp. 3–12, Cham, [Google Scholar]
  62. A.J. Norwood, P.M. Dickens, R.C. Soar, R. Harris, G. Gibbons, R. Hansell, Analysis of cooling channels performance, Int. J. Comput. Integr. Manuf. 17 (2004) 669–678 [CrossRef] [Google Scholar]
  63. S. Yun, J. Kwon, W. Cho, D. Lee, Y. Kim, Performance improvement of hot stamping die for patchwork blank using mixed cooling channel designs with straight and conformal channels, Appl. Therm. Eng. 165 (2020) 114562 [CrossRef] [Google Scholar]
  64. S. Moayedinia, Quantification of cooling channel heat transfer in low pressure die casting, University of British Columbia (2014) [Google Scholar]
  65. H. Yavuz, O. Ertugrul, Numerical analysis of the cooling system performance and effectiveness in aluminum low-pressure die casting, Int. J. Metalcast. 15 (2020) 1–13 [Google Scholar]
  66. P.R. Anerao, Y.S. Munde, Thermal analysis of feeder neck using FEM for a metal casting, Int. J. Emerg. Technol. 2 (2012) 104–108 [Google Scholar]
  67. R. Tavakoli, P. Davami, Feeder growth: a new method for automatic optimal feeder design in gravity casting processes (2009) Struct. Multidiscip. O. 39 (2009) 519 [CrossRef] [Google Scholar]
  68. R. Monroe, Porosity in castings, Trans. Am. 113 (2005) 519–546 [Google Scholar]
  69. F. Peti, L. Grama, Analyze of the possible causes of porosity type defects in aluminium high pressure diecast parts, Scientific Bulletin of the“ Petru Maior” University of Targu Mures 8 (2011) 41–44 [Google Scholar]
  70. A. Carré, B. Böttger, M. Apel, Phase-field modelling of gas porosity formation during the solidification of aluminium, Int. J. Mater. Res. 101 (2010) 510–514 [CrossRef] [Google Scholar]
  71. P. Kotas, C. Tutum, J. Hattel, O. Šnajdrová, J. Thorborg, A casting yield optimization case study: Forging ram, Int. J. Metalcast. 4 (2010) 61–76 [CrossRef] [Google Scholar]
  72. U.S. Khade, S.M. Sawant, Gating design modification using 3D CAD modeling and casting simulation for improving the casting yield, Int. J. Adv. Mech. Eng. 4 (2014) 813–820 [Google Scholar]
  73. B. Chokkalingam, V. Raja, M. Dhineshkumar, M. Priya, R. Immanual, Energy Savings in Foundries through Yield Improvement and Defect Reduction in Castings, Arch. Foundry Eng. 18 (2018) 15–18 [Google Scholar]
  74. M.S.H. Riyaz, P.U. Raikar, Yield improvement of cast part using computer aided casting simulation, Int. Res. J. Eng. Technol. 2 (2015) 858–862 [Google Scholar]
  75. G.F. Vander Voort, J. Asensio-Lozano, The al-si phase diagram, Microsc. Microanal. 15 (2009) 60–61 [CrossRef] [Google Scholar]
  76. Magmasoft − MAGMA Casting Technology,, accessed on March 1, 2021 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.