Issue
Manufacturing Rev.
Volume 9, 2022
Special Issue - Advanced Manufacturing Research for Aeronautics
Article Number 27
Number of page(s) 21
DOI https://doi.org/10.1051/mfreview/2022024
Published online 29 September 2022
  1. F. Appel, M. Paul, D.H. Oehring, Gamma titanium aluminide alloys: Science and technology, 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA, 12, 69469 Weinheim, Germany, 2011 [CrossRef] [Google Scholar]
  2. M. Balichakra, S. Bontha, P. Krishna, V.K. Balla, Prediction and validation of residual stresses generated during laser metal deposition of γ titanium aluminide thin wall structures, Mater. Res. Express. 6 (2019) 106550 [CrossRef] [Google Scholar]
  3. J.C. Chesnutt, Titanium Aluminides for Aerospace Applications, in: D.L.K.S.D. Antolohch, R.W. Stusrud, R.A. Ma&Cay, D.L. Anton, T. Khan, R.D. Kissinger (Ed.), The Minerals, Metals & Materials Society, Ohio 1992, pp. 1–9. [Google Scholar]
  4. J. Lapin, TiAl-based alloys: Present status and future perspectives, Metal. 19 (2009) 1–12 [Google Scholar]
  5. S.K. Rittinghaus, U. Hecht, V. Werner, A. Weisheit, Heat treatment of laser metal deposited TiAl TNM alloy, Intermetallics. 95 (2018) 94–101 [CrossRef] [Google Scholar]
  6. K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerosp. Sci. 55 (2012) 1–16 [CrossRef] [Google Scholar]
  7. P.A. Bartolotta, D.L. Krause, Titanium aluminide applications in the high speed civil transport, Gamma Titan. Alum. 1999 (1999) 3–10 [Google Scholar]
  8. W. Chen, Z. Li, Additive manufacturing of titanium aluminides, in: F. Froes, R. Boyer (Eds.), Addit. Manuf. Aerosp. Ind., Elsevier 2019, pp. 235–263 [Google Scholar]
  9. M. Dahms, Gamma titanium aluminide research and applications in germany and austria, Adv. Perform. Mater. 1 (1994) 157–182 [CrossRef] [Google Scholar]
  10. G. Baudana, S. Biamino, D. Ugues, M. Lombardi, P. Fino, M. Pavese, C. Badini, Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of politecnico di torino, Met. Powder Rep. 74 (2016) 2–8 [Google Scholar]
  11. T. Tetsui, K. Shindo, S. Kobayashi, M. Takeyama, A newly developed hot worked TiAl alloy for blades and structural components, Scr. Mater. 47 (2002) 399–403 [CrossRef] [Google Scholar]
  12. D. Pilone, G. Pulci, L. Paglia, A. Mondal, F. Marra, F. Felli, A. Brotzu, Mechanical behaviour of an Al2O3 dispersion strengthened γTiAl alloy produced by centrifugal casting, Metals (Basel). 10 (2020) 1–12 [Google Scholar]
  13. J. Aguilar, U. Hecht, A. Schievenbusch, Qualification of an investment casting process for production of titanium aluminide components for aerospace and automotive applications, Mater. Sci. Forum. 638–642 (2010) 1275–1280 [CrossRef] [Google Scholar]
  14. T. Noda, Application of cast gamma TiAl for automobiles, Intermetallics. 6 (1998) 709–713 [CrossRef] [Google Scholar]
  15. T. Tetsui, Development of a second generation TiAl turbocharger, Mater. Sci. Forum. 561–565 (2007) 379–382 [CrossRef] [Google Scholar]
  16. T. Tetsui, Gamma Ti aluminides for non-aerospace applications, Curr. Opin. Solid State Mater. Sci. 4 (1999) 243–248 [CrossRef] [Google Scholar]
  17. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater. 58 (2009) 1887–1894 [Google Scholar]
  18. D. Chandley, P. Metal, Use of gamma titanium aluminide for automotive engine valves, Metall. Sci. Technol. Teksid. (2000) 8–11 [Google Scholar]
  19. W. Sheng, D. Li, R. Yang, Y. Liu, Research on the Ti-48Al-2Cr-2Nb automobile exhaust valve formed in permanent mold casting during centrifugal casting process, J. Mater. Sci. Techologyogy. 17 (2001) s97–s100 [Google Scholar]
  20. A. Pathania, S.A. Kumar, B.K. Nagesha, S. Barad, T.N. Suresh, Reclamation of titanium alloy based aerospace parts using laser based metal deposition methodology, Mater. Today Proc. 45 (2021) 4886–4892 [CrossRef] [Google Scholar]
  21. J. Wang, S. Prakash, Y.V. Joshi, F. Liou, Laser aided part repair-A review, in: Solid Free. Fabr. Symp., 2002: p. na. https://www.semanticscholar.org/paper/Laser-Aided-Part-Repair-a-Review-Wang-Prakash/d3f64dd44856d73d13cdce54e83634b7f808e989#extracted. [Google Scholar]
  22. S. Rittinghaus, J. Schmelzer, M.W. Rackel, S. Hemes, A. Vogelpoth, U. Hecht, A. Weisheit, Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades, Materials (Basel). 13 (2020) 4392 [CrossRef] [Google Scholar]
  23. M.K. Keshavarz, A. Gontcharov, P. Lowden, A. Chan, D. Kulkarni, M. Brochu, Turbine blade tip repair by laser directed energy deposition additive manufacturing using a Rene 142-MERL 72 powder blend, J. Manuf. Mater. Process. 5 (2021) 21 [Google Scholar]
  24. V.I. Chukwuike, O.G. Echem, S. Prabhakaran, S. Anandkumar, R.C. Barik, Laser shock peening (LSP): Electrochemical and hydrodynamic investigation of corrosion protection pre-treatment for a copper surface in 3.5% NaCl medium, Corros. Sci. 179 (2021) 109156 [CrossRef] [Google Scholar]
  25. K.A. Ellison, P. Lowden, J. Liburdi, Powder metallurgy repair of turbine components, in: Int. Gas Turbine Aeroengine Congr. Expo., 1992, pp. 1–8 [Google Scholar]
  26. S. Nowotny, S. Scharek, E. Beyer, K. Richter, Laser beam build-up welding-Precision in repair, surface cladding, and direct 3D metal deposition, J. Therm. Spray Technol. 16 (2007) 344–348 [CrossRef] [Google Scholar]
  27. B. Wu, J. Wang, Y. Zhang, M. Luo, Adaptive location of repaired blade for multi-axis milling, J. Comput. Des. Eng. 2 (2015) 261–267 [Google Scholar]
  28. Y.P.U. Kathuria, Some aspects of laser surface cladding in the turbine industry, Surf. Coat. Technol. 132 (2000) 262–269 [CrossRef] [Google Scholar]
  29. K. Gupta, LASER cladding-A post processing technique for coating, repair and re-manufacturing, in: Mater. Forming, Mach. Post Process, Springer, Cham, 2019, pp. 231–249 [Google Scholar]
  30. L. Shepeleva, B. Medres, W.D. Kaplan, M. Bamberger, A. Weisheit, Laser cladding of turbine blades, Surf. Coat. Technol. 125 (2000) 45–48 [CrossRef] [Google Scholar]
  31. M. Nicolaus, K. Mohwald, H.J. Maier, A combined brazing and aluminizing process for repairing turbine blades by thermal spraying using the coating system NiCrSi/NiCoCrAlY/Al, J. Therm. Spray Technol. 26 (2017) 1659–1668 [CrossRef] [Google Scholar]
  32. M. Nicolaus, K. Möhwald, H.J. Maier, Thermally sprayed nickel-based repair coatings for high-pressure turbine blades: Controlling void formation during a combined brazing and aluminizing process, Coatings. 11 (2021) 725 [CrossRef] [Google Scholar]
  33. L. GmbH, Laser cladding, Laserline. (2021) 1–6 [Google Scholar]
  34. A.I. Gorunov, Complex refurbishment of titanium turbine blades by applying heat-resistant coatings by direct metal deposition, Eng. Fail. Anal. 86 (2018) 115–130 [CrossRef] [Google Scholar]
  35. Z. Xiong, G. Chen, X. Zeng, Effects of process variables on interfacial quality of laser cladding on aeroengine blade material GH4133, J. Mater. Process. Technol. 9 (2008) 930–936 [Google Scholar]
  36. I. Shishkovsky, I. Smurov, Titanium base functional graded coating via 3D laser cladding, Mater. Lett. 73 (2012) 32–35 [CrossRef] [Google Scholar]
  37. S. Rittinghaus, J. Schmelzer, M.W. Rackel, S. Hemes, A. Vogelpoth, U. Hecht, A. Weisheit, Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades, Materials (Basel). 13 (2020) 4392 [CrossRef] [Google Scholar]
  38. M. Göbel, A. Gasser, K. Wissenbach, R. Poprawe, LMD process diagrams for blade tip repair, Laser Inst. Am. 1002 (2016) 1–10 [Google Scholar]
  39. S.M. Yusuf, S. Cutler, N. Gao, Review: the impact of metal additive manufacturing on the aerospace industry, Metals (Basel). 57 (2019) 779 [Google Scholar]
  40. M. Leino, J. Pekkarinen, R. Soukka, The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing-enabling circular economy, in: 9th Int. Conf. Photonic Technol. 2016, 2016: pp. 752–760 [Google Scholar]
  41. S. Inc., Metal 3D printing applications & industries, Sciaky's Inc. (2021), pp. 1–8. https://www.sciaky.com/additive-manufacturing/applications-industries [Google Scholar]
  42. G. Thomas, Additive manufacturing: opportunities and constraints, 2013. https://www.raeng.org.uk/publications/reports/additive-manufacturing [Google Scholar]
  43. N. Jayanth, P. Senthil, B. Mallikarjuna, Experimental investigation on the application of FDM 3D printed conductive ABS-CB composite in EMI shielding, Radiat. Phys. Chem. 198 (2022) 110263 [CrossRef] [Google Scholar]
  44. B. Mallikarjuna, K. Jayachristiyan, Innovative modeling and rapid prototyping of turbocharger impeller, in: Int. Conf. Adv. Mater. Manuf. Manag. Therm. Sci., 2013, pp. 1426–1432 [Google Scholar]
  45. N. Jayanth, K. Jaswanthraj, S. Sandeep, N.H. Mallaya, S.R. Siddharth, Effect of heat treatment on mechanical properties of 3D printed PLA, J. Mech. Behav. Biomed. Mater. 123 (2021) 104764 [CrossRef] [Google Scholar]
  46. Z. Yan, W. Liu, Z. Tang, X. Liu, N. Zhang, M. Li, H. Zhang, Review on thermal analysis in laser-based additive manufacturing, Opt. Laser Technol. 106 (2018) 427–441 [CrossRef] [Google Scholar]
  47. A.H. Azman, Additive manufacturing for repair and restoration in remanufacturing: An overview from object design and systems perspectives, Processes 7 (2019) 802 [CrossRef] [Google Scholar]
  48. A. Saboori, A. Aversa, G. Marchese, S. Biamino, Application of directed energy deposition-based additive manufacturing in repair, Appl. Sci. 9 (2019) 3316 [CrossRef] [Google Scholar]
  49. A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, An overview of additive manufacturing of titanium components by directed energy deposition: microstructure and mechanical properties, Appl. Sci. 7 (2017) 883 [CrossRef] [Google Scholar]
  50. S. Alya, C. Vundru, B. Ankamreddy, R. Singh, Modeling of deposition geometry in laser directed energy deposition over inclined surfaces for restoration and remanufacturing, Trans. Indian Natl. Acad. Eng. (2021) [Google Scholar]
  51. P. Leo, G. Renna, G. Casalino, Study of the direct metal deposition of AA2024 by electro spark for coating and reparation scopes, Appl. Sci. 7 (2017) 945 [CrossRef] [Google Scholar]
  52. S. Thompson, Handbook of mould, tool and die repair welding, 1999. https://www.elsevier.com/books/handbook-of-mould-tool-and-die-repair-welding/thompson/978-1-85573-429-6 [CrossRef] [Google Scholar]
  53. I. Nuclear, Robotic laser welding system improves steam generator repair, Int. At. Energy Agency. 21 (1990) 36–38 [Google Scholar]
  54. Z. Gui, A robot for welding repair of hydraulic turbine blade, in: IEEE Conf. Robot. Autom. Mechatronics, 2008, pp. 155–159 [Google Scholar]
  55. Z. Gui, Q. Chen, W. Zhang, Z. Sun, On-site rail-free robot for welding repair of turbine blade, in: 4th Korean-Sino Conf. Adv. Manuf. Technol., 2014, pp. 74–76 [Google Scholar]
  56. A.J. Pinkerton, W. Wang, L. Li, Component repair using laser direct metal deposition, Proc. Inst. Mech. Eng. Part B 222 (2008) 827–836 [CrossRef] [Google Scholar]
  57. M. Balichakra, S. Bontha, P. Krishna, V.K. Balla, Laser surface melting of γ-TiAl alloy an experimental and numerical modeling study, Mater. Res. Express. 6 (2019) 046543 [CrossRef] [Google Scholar]
  58. R. Liu, Z. Wang, T. Sparks, F. Liou, J. Newkirk, Aerospace applications of laser additive manufacturing, in: M. Brandt (Ed.), Laser Addit. Manuf., Woodhead Publishing, 2017, pp. 351–371 [CrossRef] [Google Scholar]
  59. J.L. and D.G. Waugh, Laser surface engineering process and applications (2015) [Google Scholar]
  60. G. Baudana, S. Biamino, B. Kloden, A. Kirchner, T. Weißgarber, B. Kieback, M. Pavese, D. Ugues, P. Fino, C. Badini, Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si: feasibility investigation, Intermetallics 73 (2016) 43–49 [CrossRef] [Google Scholar]
  61. B. Mallikarjuna, S. Bontha, P. Krishna, V.K. Balla, Characterization and thermal analysis of laser metal deposited γ-TiAl thin walls, J. Mater. Res. Technol. 15 (2021) 6231–6243 [CrossRef] [Google Scholar]
  62. G.E. Additive, New manufacturing milestone: 30,000 additive fuel nozzles, GE Addit. (2021) 1–4 [Google Scholar]
  63. S. Rittinghaus, J. Zielinski, Influence of process conditions on the local solidification and microstructure during laser metal deposition of an intermetallic TiAl alloy (GE4822), Metall. Mater. Trans. A. 52 (2021) 1106–1116 [CrossRef] [Google Scholar]
  64. J. Wang, Z. Pan, Y. Ma, Y. Lu, C. Shen, D. Cuiuri, H. Li, Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour, Mater. Sci. Eng. A. 734 (2018) 110–119 [CrossRef] [Google Scholar]
  65. P. Gao, W. Huang, H. Yang, G. Jing, Q. Liu, G. Wang, Z. Wang, X. Zeng, Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting, J. Mater. Sci. Technol. 39 (2020) 144–154 [CrossRef] [Google Scholar]
  66. D. Srivastava, Microstructural characterization of the γ-TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique, Bull. Mater. Sci. 25 (2002) 619–633 [CrossRef] [Google Scholar]
  67. V. Güther, M. Allen, J. Klose, H. Clemens, Metallurgical processing of titanium aluminides on industrial scale, Intermetallics. 103 (2018) 12–22 [CrossRef] [Google Scholar]
  68. B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp. 33 (2016) 549–559 [CrossRef] [Google Scholar]
  69. X.D. Zhang, C. Brice, D.W. Mahaffey, H. Zhang, K. Schwendner, D.J. Evans, H.L. Fraser, Characterization of laser-deposited TiAl alloys, Scr. Mater. 44 (2001) 2419–2424 [CrossRef] [Google Scholar]
  70. M. Thomas, T. Malot, P. Aubry, C. Colin, T. Vilaro, P. Bertrand, The prospects for additive manufacturing of bulk TiAl alloy, Mater. High Temp. 33 (2016) 571–577 [CrossRef] [Google Scholar]
  71. W. Liu, J.N. Dupont, Fabrication of carbide-particle-reinforced titanium aluminide-matrix composites by laser-engineered net shaping, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35 (2004) 1133–1140 [CrossRef] [Google Scholar]
  72. V.K. Balla, M. Das, A. Mohammad, A.M. Al-ahmari, Additive manufacturing of g −TiAl: processing, microstructure, and properties, Adv. Eng. Eater. 18 (2016) 1–8 [CrossRef] [Google Scholar]
  73. C. Li, Z.Y. Liu, X.Y. Fang, Y.B. Guo, Residual stress in metal additive manufacturing, in: Procedia CIRP, 2018, pp. 348–353 [CrossRef] [Google Scholar]
  74. P. Rangaswamy, M.L. Griffith, M.B. Prime, T.M. Holden, R.B. Rogge, J.M. Edwards, R.J. Sebring, Residual stresses in LENS® components using neutron diffraction and contour method, Mater. Sci. Eng. A. 399 (2005) 72–83 [CrossRef] [Google Scholar]
  75. M. Balichakra, S. Bontha, P. Krishna, M. Das, V.K. Balla, Understanding thermal behavior in laser processing of titanium aluminide alloys, in: Proc. 6th Int. 27th All India Manuf. Technol. Des. Res. Conf., 2016, pp. 73–77 [Google Scholar]
  76. W. Chen, Z. Li, Additive manufacturing of titanium aluminides, Elsevier, 2019, pp. 235–263 [Google Scholar]
  77. H.P. Tang, G.Y. Yang, W.P. Jia, W.W. He, S.L. Lu, M. Qian, Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting, Mater. Sci. Eng. A. 636 (2015) 103–107 [CrossRef] [Google Scholar]
  78. B. Kemerling, J.C. Lippold, C.M. Fancher, J. Bunn, Residual stress evaluation of components produced via direct metal laser sintering, Weld. World. (2018) [Google Scholar]
  79. H.A. Soliman, M. Elbestawi, Titanium aluminides processing by additive manufacturing − a review, Springer, London, 2022 [Google Scholar]
  80. F.M. Abdullah, S. Anwar, Thermomechanical simulations of residual stresses and distortion in electron beam melting with experimental validation for Ti-6Al-4V, Metals (Basel). 10 (2020) 1151 [CrossRef] [Google Scholar]
  81. S. Lee, J. Kim, J. Choe, S.W. Kim, J.K. Hong, Y.S. Choi, Understanding crack formation mechanisms of Ti-48Al-2Cr-2Nb single tracks during laser powder bed fusion, Met. Mater. Int. 27 (2021) 78–91 [CrossRef] [Google Scholar]
  82. E. Mirkoohi, D.E. Seivers, H. Garmestani, S.Y. Liang, Heat source modeling in selective laser melting, Materials (Basel). 12 (2019) 1–18 [Google Scholar]
  83. R.M. Mahamood, E.T. Akinlabi, Effect of laser power on surface finish during laser metal deposition process, 2014, pp. 965–969 [Google Scholar]
  84. A. Martín, C.M. Cepeda-Jiménez, M.T. Pérez-Prado, Gas atomization of γ-TiAl alloy powder for additive manufacturing, Adv. Eng. Mater. 22 (2020) [Google Scholar]
  85. H.P. Qu, P. Li, S.Q. Zhang, A. Li, H.M. Wang, The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys, Mater. Des. 31 (2009) 2201–2210 [Google Scholar]
  86. M. Thomas, T. Malot, P. Aubry, Laser metal deposition of the intermetallic TiAl alloy, Metall. Mater. Trans. A. 48 (2017) 1–16 [Google Scholar]
  87. K.O. Abdulrahman, E.T. Akinlabi, R.M. Mahamood, Characteristics of laser metal deposited titanium aluminide, Mater. Res. Express Pap. 6 (2019) 046504 [CrossRef] [Google Scholar]
  88. M. Tlotleng, Microstructural properties of heat-treated LENS in situ additively manufactured titanium aluminide, J. Mater. Eng. Perform. 28 (2018) 701–708 [Google Scholar]
  89. M. Tlotleng, S. Pityana, LENS manufactured γ-TNB turbine blade using Laser “in situ” alloying approach, MRS Adv. 5 (2020) 1203–1213 [CrossRef] [Google Scholar]
  90. Z. Liu, C. Wang, W. Wang, G. Xu, X. Liu, Effects of Tantalum on the microstructure and properties of Ti-48Al-2Cr-2Nb alloy fabricated via laser additive manufacturing, Mater. Charact. 179 (2021) 111317 [CrossRef] [Google Scholar]
  91. H. Chen, Z. Liu, X. Cheng, Y. Zou, Laser deposition of graded γ-TiAl-Ti2AlNb alloys- Microstructure and nanomechanical characterization of the transition zone.pdf, J. Alloys Compd. 875 (2021) 159946 [CrossRef] [Google Scholar]
  92. D. Huang, Q. Tan, Y. Zhou, Y. Yi, F. Wang, T. Wu, X. Yang, Z. Fan, Y. Liu, J. Zhang, H. Huang, M. Yan, M.-X. Zhang, The significant impact of grain refiner on γ-TiAl intermetallic fabricated by laser-based additive manufacturing, Addit. Manuf. 46 (2021) 102172 [Google Scholar]
  93. J. Xu, Q. Zhou, J. Kong, Y. Peng, S. Guo, J. Zhu, J. Fan, Solidification behavior and microstructure of Ti-(37−52) at% Al alloys synthesized in situ via dual-wire electron beam freeform fabrication, Addit. Manuf. 46 (2021) [Google Scholar]
  94. V.R. Utyaganova, K.N. Kalashnikov, D.A. Gurianov, Microstructure and microhardness of wire-feed electron-beam additive manufactured Ti-Al thin-walled elements, in: AIP Conf. Proc., 2019, p. 020377 [CrossRef] [Google Scholar]
  95. M. Yan, F. Yang, B. Lu, C. Chen, Y. Sui, Z. Guo, Microstructure and mechanical properties of high relative density γ-TiAl alloy using irregular pre-alloyed powder, Metals (Basel). 11 (2021) 635 [CrossRef] [Google Scholar]
  96. M. Griffith, M. Schlienger, L. Harwell, M. Oliver, M. Baldwin, M. Ensz, M. Essien, J. Brooks, C. Robino, J. Smugeresky, W. Hofmeister, M. Wert, D. Nelson, Understanding thermal behavior in the LENS process, Mater. Des. 20 (1999) 107–113 [CrossRef] [Google Scholar]
  97. S. Bontha, The effect of process variables on microstructure in Laser Deposited Materials, Wright State University, 2006 [Google Scholar]
  98. E. Foroozmehr, R. Kovacevic, Effect of path planning on the laser powder deposition process: Thermal and structural evaluation, Int. J. Adv. Manuf. Technol. 51 (2010) 659–669 [CrossRef] [Google Scholar]
  99. Z. Luo, Y. Zhao, A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing, Addit. Manuf. 21 (2018) 318–332 [Google Scholar]
  100. B. Hazarika, B. Mallikarjuna, P. Krishna, V.K. Balla, S. Bontha, Numerical modelling of laser additive manufacturing processes, in: NAFEMS India Reg. Conf., 2016, pp. 30–31 [Google Scholar]
  101. I.A. Roberts, C.J. Wang, M. Stanford, K.A. Kibble, D.J. Mynors, Experimental and numerical analysis of residual stresses in additive layer manufacturing by laser melting of metal powders, Key Eng. Mater. 450 (2011) 461–465 [Google Scholar]
  102. X. Zhou, H. Zhang, G. Wang, X. Bai, Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing, Int. J. Heat Mass Transf. 103 (2016) 521–537 [CrossRef] [Google Scholar]
  103. M.L. Hupert, M.A. Witek, Y. Wang, M.W. Mitchell, X. Liu, Y. Bejat, D.E. Nikitopoulos, J. Goettert, M.C. Murphy, S.A. Soper, Polymer-based microfluidic devices for biomedical applications, Microfluid. BioMEMS, Med. Microsyst. 4982 (2003) 52–64 [CrossRef] [Google Scholar]
  104. T. Mukherjee, V. Manvatkar, T. Debroy, Mitigation of thermal distortion during additive manufacturing, Scr. Mater. 127 (2017) 79–83 [CrossRef] [Google Scholar]
  105. T. Amine, J.W. Newkirk, F. Liou, An investigation of the effect of direct metal deposition parameters on the characteristics of the deposited layers, Case Stud. Therm. Eng. 3 (2014) 21–34 [CrossRef] [Google Scholar]
  106. A. Soleymani, Thermal model for prediction of deposition dimension of a deposited nickel superalloy, Int. J. Eng. Adv. Technol. 4 (2015) 191–196 [Google Scholar]
  107. A.M. Kamara, S. Marimuthu, L. Li, A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts, J. Manuf. Sci. Eng. 133 (2011) 031013 [CrossRef] [Google Scholar]
  108. N.C. Levkulich, S.L. Semiatin, J.E. Gockel, J.R. Middendorf, A.T. DeWald, N.W. Klingbeil, The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V, Addit. Manuf. 28 (2019) 475–484 [Google Scholar]
  109. I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing, Int. J. Mach. Tools Manuf. 49 (2009) 916–923 [CrossRef] [Google Scholar]
  110. L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, M.F. Horstemeyer, Optimization of the LENS® process for steady molten pool size, Mater. Sci. Eng. A 474 (2008) 148–156 [CrossRef] [MathSciNet] [Google Scholar]
  111. S. Marimuthu, D. Clark, J. Allen, A.M. Kamara, P. Mativenga, L. Li, R. Scudamore, Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero-engine component, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 227 (2013) 1987–1999 [CrossRef] [Google Scholar]
  112. T. Mukherjee, J.S. Zuback, W. Zhang, T. Debroy, Residual stresses and distortion in additively manufactured compositionally graded and dissimilar joints, Comput. Mater. Sci. 143 (2017) 325–337 [Google Scholar]
  113. B. Ahmad, S.V.D.V. Veen, M.E. Fitzpatrick, H. Guo, Measurement and modelling of residual stress in wire-feed additively manufactured titanium, Mater. Sci. Technol. 34 (2018) 2250–2259 [CrossRef] [Google Scholar]
  114. X. Lu, M. Chiumenti, M. Cervera, J. Li, X. Lin, L. Ma, G. Zhang, E. Liang, Substrate design to minimize residual stresses in Directed Energy Deposition AM processes, Mater. Des. 202 (2021) 109525 [CrossRef] [Google Scholar]
  115. S. Zekovic, R. Dwivedi, R. Kovacevic, Thermo-structural finite element analysis of direct laser metal deposited thin-walled structures, in: Solid Free. Fabr., 2005, pp. 338–355 [Google Scholar]
  116. H. Jing, P. Ge, Z. Zhang, J.Q. Chen, Z.M. Liu, W.W. Liu, Numerical studies of the effects of the substrate structure on the residual stress in laser directed energy additive manufacturing of thin‐walled products, Metals (Basel). 12 (2022) [Google Scholar]
  117. F. Sikan, P. Wanjara, J. Gholipour, A. Kumar, M. Brochu, Thermo-mechanical modeling of wire-fed electron beam additive manufacturing, Materials (Basel). 14 (2021) 1–21 [Google Scholar]
  118. L. Yan, W. Li, X. Chen, Y. Zhang, J. Newkirk, F. Liou, D. Dietrich, Simulation of cooling rate effects on Ti-48Al-2Cr-2Nb crack formation in direct laser deposition, in: Proc. 27th Annu. Int. Solid Free. Fabr. Symp. Addit. Manuf. Conf., 2016, pp. 680–690 [Google Scholar]
  119. J. Wang, H. Wang, X. Cheng, B. Zhang, Y. Wu, S. Zhang, X. Tian, Prediction of solidification microstructure of titanium aluminum intermetallic alloy by laser surface remelting, Opt. Laser Technol. 147 (2022) [Google Scholar]
  120. F. Caiazzo, V. Alfieri, Simulation of laser-assisted directed energy deposition of aluminum powder: prediction of geometry and temperature evolution, Materials (Basel). 12 (2019) [Google Scholar]
  121. F. Caiazzo, V. Alfieri, G. Bolelli, Residual stress in laser-based directed energy deposition of aluminum alloy 2024: simulation and validation, Int. J. Adv. Manuf. Technol. 118 (2022) 1197–1211 [CrossRef] [Google Scholar]
  122. T. Kimme, M. Seifert, Laser surface cladding of titanium aluminides, Laser Tech. J. (2017) 18–20 [CrossRef] [Google Scholar]
  123. M. Rauch, J.-Y. Hascoët, M. Mallaiah, Repairing Ti-6Al-4V aeronautical components with DED additive manufacturing, in: MATEC Web Conf., 2020, p. 03017 [CrossRef] [EDP Sciences] [Google Scholar]
  124. J.M. Wilson, C. Piya, Y.C. Shin, F. Zhao, K. Ramani, Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis, J. Clean. Prod. 80 (2014) 170–178 [CrossRef] [Google Scholar]
  125. B. Carcel, A. Serrano, J. Zambrano, V. Amigo, A.C. Carcel, Laser cladding of TiAl intermetallic alloy on Ti6Al4V process optimization and properties, Phys. Proc. 56 (2014) 284–293 [CrossRef] [Google Scholar]
  126. Z.F. Li, G.Q. Wu, Z. Huang, Z.J. Ruan, Diffusion bonding of laser surface modified TiAl alloy/Ni alloy, Mater. Lett. 58 (2004) 3470–3473 [CrossRef] [Google Scholar]
  127. G.X. Luo, G.Q. Wu, Z. Huang, Z.J. Ruan, Diffusion bonding of laser-surface-modified gamma titanium aluminide alloy to nickel-base casting alloy, Scr. Mater. 57 (2007) 521–524 [CrossRef] [Google Scholar]
  128. M. Balichakra, S. Bontha, P. Krishna, M. Das, V.K. Balla, Understanding thermal behavior in laser processing of titanium aluminide alloys, in: Proc. 6th Int. 27th All India Manuf. Technol. Des. Res. Conf., 2016, pp. 73–77. [Google Scholar]
  129. K. Kothari, R. Radhakrishnan, N.M. Wereley, Characterization of rapidly consolidated titanium diboride, J. Eng. Mater. Technol. 133 (2011) 024501 [CrossRef] [Google Scholar]
  130. M. Thomas, T. Malot, P. Aubry, C. Colin, T. Vilaro, P. Bertrand, The prospects for additive manufacturing of bulk TiAl alloy, Mater. High Temp. 33 (2016) 571–577 [CrossRef] [Google Scholar]
  131. V. Boehm, Hybrid manufacturing of turbine components, Laser Tech. J. 13 (2016) 44–47 [CrossRef] [Google Scholar]
  132. S. Rittinghaus, Va. Weishei, M. Mathes, W.G. Vargas, Laser metal deposition of titanium aluminides-A future repair technology for jet engine blades?, in: Proc. 13th World Conf. Titan., 2016, pp. 1205–1210 [Google Scholar]
  133. S. Ocylok, A. Weisheit, I. Kelbassa, Increased wear and oxidation resistance of titanium aluminide alloys by laser cladding, Adv. Mater. Res. 278 (2011) 515–520 [CrossRef] [Google Scholar]
  134. P. Wanjara, K. Watanabe, C. De Formanoir, Q. Yang, C. Bescond, S. Godet, M. Brochu, K. Nezaki, J. Gholipour, P. Patnaik, Titanium alloy repair with wire-feed electron beam additive manufacturing technology, Adv. Mater. Sci. Eng. 2019 (2019) 23 [CrossRef] [Google Scholar]
  135. S. Rittinghaus, V. Rocio, M. Ramirez, A. Vogelpoth, U. Hecht, J. Schmelzer, Laser based manufacturing of titanium aluminides, in: 14th World Conf. Titan., 2020, p. 08001 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.