Open Access
Issue |
Manufacturing Rev.
Volume 9, 2022
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/mfreview/2022025 | |
Published online | 27 September 2022 |
- M. Haghshenas, Metal-Matrix Composites. Reference Module in Materials Science and Materials Engineering (2016) 0–28 [Google Scholar]
- V. Sharma, Y. Gupta, B.V. Kumar, U. Prakash, V. Sharma, Y. Gupta et al., Friction stir processing strategies for uniform distribution of reinforcement in a surface composite friction stir processing strategies for uniform distribution of reinforcement in a surface composite, LMMP 31 (2015) 1384–1392 [Google Scholar]
- S. Rathee, S. Maheshwari, A.N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing: a review, Mater. Manufactur. Process. 33 (2018) 239–261 [CrossRef] [Google Scholar]
- O.M. Ikumapayi, E.T. Akinlabi, S.K. Pal, J.D. Majumdar, A survey on reinforcements used in friction stir processing of aluminium metal matrix and hybrid composites, Proc. Manufactur. 35 (2019) 935–940 [CrossRef] [Google Scholar]
- V. Chak, H. Chattopadhyay, T.L. Dora, A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites, J. Manufactur. Process. 56 (2020) 1059–1074 [CrossRef] [Google Scholar]
- P. Samal, P.R. Vundavilli, A. Meher, M.M. Mahapatra, Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties, J. Manufactur. Process. 59 (2020) 131–152 [CrossRef] [Google Scholar]
- P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain, P. Gupta, Advance research progresses in aluminium matrixcomposites: manufacturing & applications, J. Mater. Res. Technol. 8 (2019) 4924–4939 [CrossRef] [Google Scholar]
- R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scr. Mater. 42 (1999) 163–168 [CrossRef] [Google Scholar]
- G.K. Padhy, C.S. Wu, S. Gao, Friction stir based welding and processing technologies − processes, parameters, microstructures and applications: a review, J. Mater. Sci. Technol. 34 (2018) 1–38 [CrossRef] [Google Scholar]
- R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R: Rep. 50 (2005) 1–78 [Google Scholar]
- K. Li, X. Liu, Y. Zhao, Research status and prospect of friction stir processing technology, Coatings 9 (2019) 1–14 [Google Scholar]
- S. Mironov, Y.S. Sato, H. Kokawa, Microstructural evolution during friction stir-processing of pure iron, Acta Mater. 56 (2008) 2602–2614 [CrossRef] [Google Scholar]
- Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci. 43 (2018) 269–333 [CrossRef] [Google Scholar]
- V. Patel, W. Li, A. Vairis, V. Badheka, Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement, Crit. Rev. Solid State Mater. Sci. 44 (2019) 378–426 [CrossRef] [Google Scholar]
- V. Sharma, U. Prakash, B.V.M. Kumar, Surface composites by friction stir processing: a review, J. Mater. Process. Technol. 224 (2015) 117–134 [CrossRef] [Google Scholar]
- B. Ratna Sunil, Different strategies of secondary phase incorporation into metallic sheets by friction stir processing in developing surface composites, Int. J. Mech. Mater. Eng. 11 (2016) 1–8 [Google Scholar]
- J. Iwaszko, M. Sajed, Technological aspects of producing surface composites by friction stir processing—a review, J. Compos. Sci. 5 (2021) 1–31 [Google Scholar]
- R.S. Mishra, Z.Y. Ma, I. Charit, Friction stir processing: a novel technique for fabrication of surface composite, Mater. Sci. Eng. A 341 (2003) 307–310 [CrossRef] [Google Scholar]
- R. Srinivasu, A. Sambasiva Rao, G. Madhusudhan Reddy, K. Srinivasa Rao, Friction stir surfacing of cast A356 aluminium-silicon alloy with boron carbide and molybdenum disulphide powders, Defence Technol. 11 (2015) 140–146 [CrossRef] [Google Scholar]
- H.G. Rana, V.J. Badheka, A. Kumar, Fabrication of Al7075/B4C surface composite by novel friction stir processing (FSP) and investigation on wear properties, Proc. Technol. 23 (2016) 519–528 [CrossRef] [Google Scholar]
- E.R.I. Mahmoud, K. Ikeuchi, M. Takahashi, Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing, Sci. Technol. Weld. Join. 13 (2008) 607–618 [CrossRef] [Google Scholar]
- C.M. Abreu, R. Acuña, M. Cabeza, M.J. Cristóbal, P. Merino, D. Verdera, Microstructure and mechanical properties of Al/SiC composite surface layer produced by friction stir processing, Ciencia e Tecnolog. Dos Mater. 29 (2017) e82–e86 [CrossRef] [Google Scholar]
- C. María Abreu Fernández, R.A. Rey, M. Julia Cristóbal Ortega, D. Verdera, C.L. Vidal, Friction stir processing strategies to develop a surface composite layer on AA6061- T6, Mater. Manufactur. Process. 33 (2018) 1133–1140 [CrossRef] [Google Scholar]
- A. Thangarasu, N. Murugan, I. Dinaharan, S.J. Vijay, Microstructure and microhardness of AA1050/TiC surface composite fabricated using friction stir processing, Sadhana − Acad. Proc. Eng. Sci. 37 (2012) 579–586 [Google Scholar]
- G. Huang, W. Hou, Y. Shen, Evaluation of the microstructure and mechanical properties of WC particle reinforced aluminum matrix composites fabricated by friction stir processing, Mater. Character. 138 (2018) 26–37 [CrossRef] [Google Scholar]
- A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Mater. Sci. Eng. A 500 (2009) 84–91 [CrossRef] [Google Scholar]
- H.C. Madhu, P. Ajay Kumar, C.S. Perugu, S.V. Kailas, Microstructure and mechanical properties of friction stir process derived Al-TiO2 nanocomposite, J. Mater. Eng. Perform. 27 (2018) 1318–1326 [CrossRef] [Google Scholar]
- M. Narimani, B. Lotfi, Z. Sadeghian, Investigating the microstructure and mechanical properties of Al-TiB2 composite fabricated by Friction Stir Processing (FSP), Mater. Sci. Eng. A 673 (2016) 436–442 [CrossRef] [Google Scholar]
- S. Bharti, N.D. Ghetiya, K.M. Patel, A review on manufacturing the surface composites by friction stir processing, Mater. Manufactur. Process. 36 (2021) 135–170 [CrossRef] [Google Scholar]
- J. Selvam, Matrix and Reinforcement Materials for Metal Matrix Composites, Elsevier Ltd (2021) 1–27. https://doi.org/10.1016/B978-0-12-803581-8.11890-9 [Google Scholar]
- Y. Zhao, X. Huang, Q. Li, J. Huang, K. Yan, Effect of friction stir processing with B4C particles on the microstructure and mechanical properties of 6061 aluminum alloy, Int. J. Adv. Manufactur. Technol. 78 (2015) 1437–1443 [CrossRef] [Google Scholar]
- N.A. El-Mahallawy, S.H. Zoalfakar, A. Abdel Ghaffar Abdel Maboud, Microstructure investigation, mechanical properties and wear behavior of Al 1050/SiC composites fabricated by friction stir processing (FSP), Mater. Res. Express. 6 (2019) 1–15 [Google Scholar]
- R.D. Bourkhani, A.R. Eivani, H.R. Nateghi, Through-thickness inhomogeneity in microstructure and tensile properties and tribological performance of friction stir processed AA1050-Al2O3 nanocomposite, Compos. B: Eng. 174 (2019) 107061 [CrossRef] [Google Scholar]
- S.M. Ma, P. Zhang, G. Ji, Z. Chen, G.A. Sun, S.Y. Zhong et al., Microstructure and mechanical properties of friction stir processed Al-Mg-Si alloys dispersion-strengthened by nanosized TiB2 particles, J. Alloys Compd. 616 (2014) 128–136 [CrossRef] [Google Scholar]
- H. Rana, V. Badheka, A. Kumar, A. Satyaprasad, Strategical parametric investigation on manufacturing of Al-Mg-Zn-Cu alloy surface composites using FSP, Mater. Manufactur. Process. 33 (2018) 534–545 [CrossRef] [Google Scholar]
- K.M. Mehta, V.J. Badheka, Wear behavior of boron-carbide reinforced aluminum surface composites fabricated by Friction Stir Processing, Wear 426–427 (2019) 975–980 [CrossRef] [Google Scholar]
- M.C. Lorenzo-Martin, O.O. Ajayi, Surface layer modification of 6061 al alloy by friction stir processing and second phase hard particles for improved friction and wear performance, J. Tribol. 136 (2014) 1–6 [Google Scholar]
- M. Komarasamy, R.S. Mishra, J.A. Baumann, G. Grant, Y. Hovanski, Processing, microstructure and mechanical property correlation in Al-B4C surface composite produced via friction stir processing, TMS Annu. Meet. (2013) 39–46. https://doi.org/10.1002/9781118658345.ch5 [Google Scholar]
- M. Akbari, M.H. Shojaeefard, P. Asadi, A. Khalkhali, Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II, Trans. Nonferrous Metals Soc. China (English Edition) 27 (2017) 2317–2333 [CrossRef] [Google Scholar]
- M. Narimani, B. Lotfi, Z. Sadeghian, Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing, Surf. Coat. Technol. 285 (2016) 1–10 [CrossRef] [Google Scholar]
- E.T. Akinlabi, R.M. Mahamood, S.A. Akinlabi, E. Ogunmuyiwa, Processing parameters influence on wear resistance behaviour of friction stir processed Al-TiC composites, Adv. Mater. Sci. Eng. 2014 (2014) 1–13 [CrossRef] [Google Scholar]
- I. Dinaharan, Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing, J. Asian Ceram. Soc. 4 (2016) 209–218 [CrossRef] [Google Scholar]
- A. Thangarasu, N. Murugan, Effect of ceramic particles on microstructure and mechanical properties of aluminium surface composite fabricated using friction stir processing, Mater. Sci. Forum 830–831 (2015) 440–443 [CrossRef] [Google Scholar]
- K.O. Sanusi, E.T. Akinlabi, Friction-stir processing of a composite aluminium alloy (AA 1050) reinforced with titanium carbide powder, Mater. Tehnolog. 51 (2017) 427–435 [CrossRef] [Google Scholar]
- D. Yadav, R. Bauri, Friction stir processing of Al-TiB2 in situ composite: effect on particle distribution, microstructure and properties, J. Mater. Eng. Perform. 24 (2015) 1116–1124 [CrossRef] [Google Scholar]
- R. Sharma, A.K. Singh, A. Arora, S. Pati, P.S. De, Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution, Trans. Nonferrous Metals Soc. China (English Edition) 29 (2019) 1383–1392 [CrossRef] [Google Scholar]
- R. Palanivel, I. Dinaharan, R.F. Laubscher, J.P. Davim, Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing, Mater. Des. 106 (2016) 195–204 [CrossRef] [Google Scholar]
- A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A.Z. Hanzaki, Wear assessment of Al/Al2O3 nano-composite surface layer produced using friction stir processing, Wear 270 (2011) 403–412 [CrossRef] [Google Scholar]
- N. Parumandla, K. Adepu, Effect of tool shoulder geometry on fabrication of Al/Al2O3 surface nano composite by friction stir processing, Particul. Sci. Technol. 0 (2018) 1–10 [Google Scholar]
- Z. Du, M.J. Tan, J.F. Guo, G. Bi, J. Wei, Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP), Mater. Sci. Eng. A 667 (2016) 125–131 [CrossRef] [Google Scholar]
- H. Eftekharinia, A.A. Amadeh, A. Khodabandeh, M. Paidar, Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes, Rare Metals 39 (2016) 1–7 [Google Scholar]
- K. Elangovan, V. Balasubramanian, Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy, J. Mater. Process. Technol. 200 (2008) 163–175 [CrossRef] [Google Scholar]
- M.H. Shojaeefard, M. Akbari, Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B 4C / aluminum composites, Proc. IMechE Part L 0 (2016) 1–15 [Google Scholar]
- J. Tang, Y. Shen, J. Li, Investigation of microstructure and mechanical properties of SiC/Al surface composites fabricated by friction stir processing, Mater. Res. Express 6 (2019) 1–13 [Google Scholar]
- N. Gangil, S. Maheshwari, A.N. Siddiquee, Multipass FSP on AA6063-T6 Al: Strategy to fabricate surface composites, Mater. Manufactur. Process. 33 (2018) 805–811 [CrossRef] [Google Scholar]
- S. Rathee, S. Maheshwari, A.N. Siddiquee, M. Srivastava, Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing, Defence Technol. 13 (2017) 86–91 [CrossRef] [Google Scholar]
- J. Tang, Y. Shen, J. Li, Influences of friction stir processing parameters on microstructure and mechanical properties of SiC/Al composites fabricated by multi-pin tool, J. Manufactur. Process. 38 (2019) 279–289 [CrossRef] [Google Scholar]
- P. Vijayavel, V. Balasubramanian, S. Sundaram, Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processed LM25AA-5% SiCp metal matrix composites, Mater. Des. 57 (2014) 1–9 [CrossRef] [Google Scholar]
- M. Amra, K. Ranjbar, R. Dehmolaei, Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites, J. Mater. Eng. Perform. 24 (2015) 3169–3179 [CrossRef] [Google Scholar]
- M.K. Gupta, Analysis of tribological behavior of Al/Gr/MoS2 surface composite fabricated by friction stir process, Carbon Lett. 30 (2019) 399–408 [Google Scholar]
- N. Saini, C. Pandey, S. Thapliyal, D.K. Dwivedi, Mechanical properties and wear behavior of Zn and MoS2 reinforced surface composite Al-Si alloys using friction stir processing, Silicon 10 (2018) 1979–1990 [CrossRef] [Google Scholar]
- S.A. Alidokht, A. Abdollah-zadeh, S. Soleymani, H. Assadi, Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing, Mater. Des. 32 (2011) 2727–2733 [CrossRef] [Google Scholar]
- Z.Y. Zhang, R. Yang, Y. Li, G. Chen, Y.T. Zhao, M.P. Liu, Microstructural evolution and mechanical properties of friction stir processed ZrB2/6061Al nanocomposites, J. Alloys Compd. 762 (2018) 312–318 [CrossRef] [Google Scholar]
- Z. Zhang, R. Yang, Y. Guo, G. Chen, Y. Lei, Y. Cheng et al. Microstructural evolution and mechanical properties of ZrB2/6061Al nanocomposites processed by multi-pass friction stir processing, Mater. Sci. Eng. A 689 (2017) 411–418 [CrossRef] [Google Scholar]
- R. Prasad, S.P. Tewari, J.K. Singh, Microstructural and wear characterization of friction stir processed microstructural and wear characterization of friction stir processed ZrB2/AA7075 in-situ composites, Mater. Res. Express. 6 (2019) 1–14 [Google Scholar]
- V. Mathur, S.B. Prabu, G. Patel, A.K. Shettigar, Reinforcement of titanium dioxide nanoparticles in aluminium alloy AA 5052 through friction stir process, Adv. Mater. Process. Technolog. 5 (2019) 329–337 [CrossRef] [Google Scholar]
- V. Sharma, P. Tripathi, Approaches to measure volume fraction of surface composites fabricated by friction stir processing: a review, Measurement 193 (2022) 110941 [CrossRef] [Google Scholar]
- F. Khodabakhshi, A. Simchi, A.H. Kokabi, M. Sadeghahmadi, A.P. Gerlich, Reactive friction stir processing of AA 5052-TiO2 nanocomposite: process-microstructure-mechanical characteristics, Mater. Sci. Technol. 31 (2015) 426–435 [CrossRef] [Google Scholar]
- K.A. Kumar, S. Natarajan, M. Duraiselvam, S. Ramachandra, Synthesis, characterization and mechanical behavior of Al 3003-TiO2 surface composites through friction stir processing, Mater. Manufactur. Process. 34 (2019) 183–191 [CrossRef] [MathSciNet] [Google Scholar]
- S. Ahmadifard, S. Kazemi, A. Momeni, A356/TiO2 nanocomposite fabricated by friction stir processing: microstructure, mechanical properties and tribologic behavior, Jom 70 (2018) 2626–2635 [CrossRef] [Google Scholar]
- V.K.S. Jain, J. Varghese, S. Muthukumaran, Effect of first and second passes on microstructure and wear properties of titanium dioxide-reinforced aluminum surface composite via friction stir processing, Arab. J. Sci. Eng. 44 (2019) 949–957 [CrossRef] [Google Scholar]
- G. Huang, J. Wu, W. Hou, Y. Shen, J. Gao, Producing of Al-WC surface composite by additive friction stir processing, Mater. Manufactur. Process. 34 (2019) 147–158 [CrossRef] [Google Scholar]
- J. Rodelas, J. Lippold, Characterization of engineered nickel-base alloy surface layers produced by additive friction stir processing, Metallogr. Microstruct. Anal. 2 (2013) 1–12 [CrossRef] [Google Scholar]
- B. Li, Y. Shen, L. Lei, W. Hu, Fabrication and evaluation of Ti 3Al p/Ti-6Al-4V surface layer via additive friction-stir processing, Mater. Manufactur. Process. 29 (2014) 412–417 [CrossRef] [Google Scholar]
- A. Heidarpour, Fabrication and characterization of A5083-WC-Al2O3 surface composite by friction stir processing, J. Mater. Eng. Perform. 28 (2019) 2747–2753 [CrossRef] [Google Scholar]
- Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing, Carbon 50 (2012) 1843–1852 [CrossRef] [Google Scholar]
- Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing, Carbon 69 (2014) 264–274 [CrossRef] [Google Scholar]
- Z. Du, M.J. Tan, J.F. Guo, J. Wei, Friction stir processing of Al-CNT composites, Proc. Inst. Mech. Eng. L 230 (2016) 825–833 [Google Scholar]
- H. Izadi, A.P. Gerlich, Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites, Carbon 50 (2012) 4744–4749 [CrossRef] [Google Scholar]
- Q. Liu, L. Ke, F. Liu, C. Huang, L. Xing, Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing, Mater. Des. 45 (2013) 343–348 [CrossRef] [Google Scholar]
- A. Sharma, H. Fujii, J. Paul, Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061-CNT nanocomposite fabricated via FSP, J. Manufactur. Process. 59 (2020) 604–620 [CrossRef] [Google Scholar]
- S.A. Hosseini, K. Ranjbar, R. Dehmolaei, A.R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing, J. Alloys Compd. 622 (2015) 725–733 [CrossRef] [Google Scholar]
- D.J. Hartl, D.C. Lagoudas, Aerospace applications of shape memory alloys, Proc. Inst. Mech. Eng. G 221 (2007) 535–552 [CrossRef] [Google Scholar]
- D.R. Ni, J.J. Wang, Z.N. Zhou, Z.Y. Ma, Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing, J. Alloys Compd. 586 (2014) 368–374 [CrossRef] [Google Scholar]
- G.Q. Huang, Y.F. Yan, J. Wu, Y.F. Shen, A.P. Gerlich, Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing, J. Alloys Compd. 786 (2019) 257–271 [CrossRef] [Google Scholar]
- S. Ahmadifard, A. Momeni, S. Bahmanzadeh, S. Kazemi, Microstructure, tribological and mechanical properties of Al7075 / Ti3AlC2 MAX-phase surface composite produced by friction stir processing, Vacuum 155 (2018) 134–141 [CrossRef] [Google Scholar]
- A. Manochehrian, A. Heidarpour, Y. Mazaheri, S. Ghasemi, On the surface reinforcing of A356 aluminum alloy by nanolayered Ti3AlC2 MAX phase via friction stir processing, Surf. Coat. Technol. 377 (2019) 124884 [CrossRef] [Google Scholar]
- H. Kumar, R. Prasad, P. Kumar, S.P. Tewari, J.K. Singh, Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing, J. Alloys Compd. 831 (2020) 154832 [CrossRef] [Google Scholar]
- M. Bilal, N. Shaikh, M. Ahmed, M. Zubair, A. Khan, Rice husk ash reinforced aluminium matrix composites: fabrication, characterization, statistical analysis and artificial neural network modelling Rice husk ash reinforced aluminium matrix composites: fabrication, characterization, analysis and artificial neural network modelling, Mater. Res. Express 6 (2019) 1–23 [Google Scholar]
- I. Dinaharan, K. Kalaiselvan, N. Murugan, Influence of rice husk ash particles on microstructure and tensile behavior of AA6061 aluminum matrix composites produced using friction stir processing, Compos. Commun. 3 (2017) 42–46 [CrossRef] [Google Scholar]
- R. Butola, Q. Murtaza, Fabrication and optimization of AA7075 matrix surface composites using Taguchi technique via friction stir processing (FSP), Eng. Res. Express 1 (2019) 025015 [CrossRef] [Google Scholar]
- A. Dey, K.M. Pandey, Characterization of fly ash and its reinforcement effect on metal matrix composites: a review, Rev. Adv. Mater. Sci. 44 (2016) 168–181 [Google Scholar]
- R. Nelson, I.S. Dinaharan, J. Vijay, Design and development of Fly ash reinforced aluminium matrix composite using friction stir process (FSP), in 2013 International Conference on Energy Efficient Technologies for Sustainability (2013), pp. 883–887 [CrossRef] [Google Scholar]
- N.A. Patil, N. Zhongyan, S.R. Pedapati, O.B. Mamat, Investigation on effect of fly ash volume percentage on microstructure and microhardness of aa7075—fly ash surface composites via fsp, Lect. Notes Mech. Eng. (2020). https://doi.org/10.1007/978-981-15-5753-8_37 [Google Scholar]
- S.N. Dasari, N.S. Potluri, A.V.S. Ramprasad, Influence of rock dust reinforcement on mechanical properties of Al composite using friction stir processing, Austr. J. Mech. Eng. 00 (2020) 1–10 [Google Scholar]
- A. Dey, K.M. Pandey, Characterization of fly ash and its reinforcement effect on metal matrix composites: a review, Rev. Adv. Mater. Sci. 44 (2016) 168–181 [Google Scholar]
- X. Yang, P. Dong, Z. Yan, B. Cheng, X. Zhai, AlCoCrFeNi high-entropy alloy particle reinforced 5083Al matrix composites with fi ne grain structure fabricated by submerged friction stir processing, J. Alloys Compd. 836 (2020) 155411 [CrossRef] [Google Scholar]
- A. Yazdipour, M.A. Shafiei, K. Dehghani, Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083, Mater. Sci. Eng. A 527 (2009) 192–197 [CrossRef] [Google Scholar]
- A. Kumar, K. Pal, S. Mula, Effects of cryo-FSP on metallurgical and mechanical properties of stir cast Al7075-SiC nanocomposites, J. Alloys Compd. 852 (2021) 156925 [CrossRef] [Google Scholar]
- J. Gao, X. Wang, S. Zhang, L. Yu, J. Zhang, Y. Shen, Producing of FeCoNiCrAl high-entropy alloy reinforced Al composites via friction stir processing technology, Int. J. Adv. Manufactur. Technol. 110 (2020) 569–408 [CrossRef] [Google Scholar]
- J. Li, Y. Li, F. Wang, X. Meng, L. Wan, Z. Dong et al. Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement, Mater. Sci. Eng. A 792 (2020) 139755 [CrossRef] [Google Scholar]
- D. Shaysultanov, N. Stepanov, S. Malopheyev, I. Vysotskiy, V. Sanin, S. Mironov, Materials characterization friction stir welding of a сarbon-doped CoCrFeNiMn high-entropy alloy, Mater. Characteriz. 145 (2018) 353–361 [CrossRef] [Google Scholar]
- C.J. Hsu, P.W. Kao, N.J. Ho, Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing, Mater. Lett. 61 (2007) 1315–1318 [CrossRef] [Google Scholar]
- H. Fotoohi, B. Lotfi, Z. Sadeghian, J. Byeon, Microstructural characterization and properties of in situ Al-Al 3 Ni/TiC hybrid composite fabricated by friction stir processing using reactive powder, Mater. Characteriz. 149 (2019) 124–132 [CrossRef] [Google Scholar]
- I. Dinaharan, Ashok G. Kumar, S.J. Vijay, N. Murugan, Development of Al3Ti and Al3Zr intermetallic particulate reinforced aluminum alloy AA6061 in situ composites using friction stir processing, Mater. Des. 63 (2014) 213–222 [CrossRef] [Google Scholar]
- N. Yuvaraj, S. Aravindan Vipin, Wear characteristics of Al5083 surface hybrid nano-composites by friction stir processing, Trans. Indian Inst. Metals 70 (2017) 1111–1129 [CrossRef] [Google Scholar]
- N. Pol, G. Verma, R.P. Pandey, T. Shanmugasundaram, Fabrication of AA7005/TiB2-B4C surface composite by friction stir processing: evaluation of ballistic behaviour, Defence Technol. 15 (2019) 363–368 [CrossRef] [Google Scholar]
- S. Soleymani, A. Abdollah-zadeh, S.A. Alidokht, Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing, Wear 278–279 (2012) 41–47 [CrossRef] [Google Scholar]
- M. Akbari, M.H. Shojaeefard, P. Asadi, A. Khalkhali, Wear and mechanical properties of surface hybrid metal matrix composites on Al-Si aluminum alloys fabricated by friction stir processing, Proc. Inst. Mech. Eng. L 233 (2019) 790–799 [CrossRef] [Google Scholar]
- Y.M. Jalilvanda Mohammad Mahdi, M.R. Akbar Heidarpourb, Development of A356/Al2O3 + SiO2 surface hybrid nanocomposite by friction stir processing, Surf. Coat. Technol. 360 (2019) 121–132 [CrossRef] [Google Scholar]
- A. Sharma, V. Sharma, S. Mewar, S. Pal, J. Paul, Friction stir processing of Al6061-SiC-graphite hybrid surface composites, Mater. Manufactur. Process. 33 (2018) 795–804 [Google Scholar]
- Rajesh, P. Kaushik, Micro structural behavior analysis of friction stir processed Al alloy AA6063/SIC, Int. J. Mech. Eng. Technol. 8 (2017) 991–998 [Google Scholar]
- R. Ande, P. Gulati, D.K. Shukla, H. Dhingra, ScienceDirect microstructural and wear characteristics of friction stir processed Al-7075/SiC reinforced aluminium composite, Mater. Today 18 (2019) 4092–4101 [Google Scholar]
- M. Yang, C. Xu, C. Wu, K.C. Lin, Y.J. Chao, L. An, Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing, J. Mater. Sci. 45 (2010) 4431–4438 [CrossRef] [Google Scholar]
- E. Moustafa, Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites, Materials 10 (2017) 1–17 [Google Scholar]
- H. Eskandari, R. Taheri, F. Khodabakhshi, Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: microstructural developments and mechanical properties, Mater. Sci. Eng. A 660 (2016) 84–96 [CrossRef] [Google Scholar]
- S. Kumar, A. Kumar, C. Vanitha, Corrosion behaviour of Al 7075 /TiC composites processed through friction stir processing, Mater. Today: Proc. 15 (2019) 21–29 [CrossRef] [Google Scholar]
- A. Shiva, M. Cheepu, V.C. Kantumuchu, K. Ravi Kumar, D. Venkateswarlu, B. Srinivas et al., Microstructure characterization of Al-TiC surface composite fabricated by friction stir processing, IOP Conf. Ser.: Mater. Sci. Eng. 330 (2018) 1–10 [Google Scholar]
- L.F. Ali, R. Soundararajan, S. Jeyasurya, M. Kovarthanam, S.N. Prasath, Materials Today: Proceedings Metallurgical assessment of AA7075-T6 with x wt % tungsten carbide nanoparticle surface composites processed by FSP route, Mater. Today: Proc. 45 (2020) 2152–2158 [Google Scholar]
- H.E. Misak, C.A. Widener, D.A. Burford, R. Asmatulu, Fabrication and characterization of carbon nanotube nanocomposites into 2024-T3 Al substrates via friction stir welding process, J. Eng. Mater. Technol. Trans. ASME 136 (2014) 1–5 [CrossRef] [Google Scholar]
- T. Owa, Y. Shimizu, Fabrication and strength behavior of MWCNT-reinforced 5083 aluminum alloy composite via friction stir processing, Mater. Trans. 59 (2018) 1798–1804 [CrossRef] [Google Scholar]
- M. Balakrishnan, I. Dinaharan, R. Palanivel, R. Sathiskumar, Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites, J. Alloys Compd. 785 (2019) 531–541 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.