Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 25
Number of page(s) 10
DOI https://doi.org/10.1051/mfreview/2022023
Published online 23 August 2022
  1. R.S. Mishra, M.W. Mahoney, Friction Stir Welding and Processing, ASM International: Materials Park, OH, USA (2007) [Google Scholar]
  2. A. Siddiquee, A.N. Siddiquee, Z.A. Khan, M. Ubaid, D. Bajaj, M. Atif, A. Khan, Microstructure evolution of friction stir welded dissimilar aerospace aluminium alloys, IOP Conf. Series: Mater. Sci. Eng. 404 (2018) 012002 [CrossRef] [Google Scholar]
  3. Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Recent advances in friction stir welding/processing of aluminium alloys: microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci. 43 (2018) 269–333 [CrossRef] [Google Scholar]
  4. G. Çam, S. Mistikoglu, Recent developments in friction stir welding of Al-alloys, J. Mater. Eng. Perform. 23 (2014) 1936–1953 [CrossRef] [Google Scholar]
  5. S. Lin, J. Tang, S. Liu, Y. Deng, H. Lin, H. Ji, L. Ye, X. Zhang, Effect of travel speed on microstructure and mechanical properties of FSW joints for Al-Zn-Mg alloy, Materials 12 (2019) 4178 [CrossRef] [Google Scholar]
  6. S.S. Sabari, S. Malarvizhi, V. Balasubramanian, Characteristics of FSW and UWFSW joints of AA2519-T87 aluminium alloy: effect of tool rotation speed, J. Manuf. Process. 22 (2016) 278–289 [CrossRef] [Google Scholar]
  7. M. Ubaid, D. Bajaj, A.K. Mukhopadhyay, A.N. Siddiquee, Friction stir welding of thick AA2519 alloy: Defect elimination, mechanical and micro-structural characterization, Met. Mater. Int. (2019) 1–20 [Google Scholar]
  8. X.P. Liang, H.Z. Li, Z. Li, T. Hong, B. Ma, S.D. Liu, Y. Liu, Study on the microstructure in a friction stir welded 2519-T87 Al alloy, Mater. Des. 35 (2012) 603–608 [CrossRef] [Google Scholar]
  9. J. Torzewski, K. Grzelak, M. Wachowski, R. Kosturek, Microstructure and low cycle fatigue properties of AA5083 H111 friction stir welded joint, Materials 13 (2020) 2381 [CrossRef] [Google Scholar]
  10. J.J. Jr, L.S. Kramer, J.R. Pickens, Aluminum alloy 2519 in military vehicles, Adv. Mater. Process. 160 (2002) 43–46 [Google Scholar]
  11. G. Owolabi, T. Daramola, N. Yilmaz, H. Whitworth, A. Zeytinchi, Mechanical properties of ultrafine grain 2519 aluminum alloy, in TMS Annual Meeting & Exhibition, Proceedings of the 147th Annual Meeting & Exhibition Supplemental TMS, 11–15. 03, Phoenix, Arizona, 11–15 March 2018; The Minerals, Metals & Materials Series , Springer International Publishing: Cham, Switzerland (2018) pp. 943–950 [Google Scholar]
  12. B. Płonka, M. Rajda, Z. Zamkotowicz, J. Zelechowski, K. Remsak, P. Korczak, W. Szymanski, L. Sniezek, Studies of the AA2519 alloy hot rolling process and cladding with EN AW-1050A alloy, Arch. Metall. Mater. 61 (2016) 381–388 [CrossRef] [Google Scholar]
  13. V.V. Zakharov, Combined alloying of aluminium alloys with scandium and zirconium, Met. Sci. Heat Treat. 56 (2014) 281–286 [CrossRef] [Google Scholar]
  14. Z.H. Jia, J. Røyset, J.K. Solberg, Q. Liu, Formation of precipitates and recrystallization resistance in Al-Sc-Zr alloys, Trans. Nonferrous Met. Soc. China 22 (2012) 1866–1871 [CrossRef] [Google Scholar]
  15. Y. Chen, J. Feng, H. Liu, Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys, Mater. Charact. 60 (2009) 476–481 [CrossRef] [Google Scholar]
  16. A. Akram, H. Abdulkadhum, Optimization of friction stir welding process parameters to joint 7075-T6 aluminium alloy by utilizing Taguchi technique, J. Eng. 25 (2019) 1–15 [Google Scholar]
  17. R. Kosturek, L. Sniezek, J. Torzewski, M. Wachowski, The influence of welding parameters on macrostructure and mechanical properties of Sc-modified AA2519-T62 FSW joints, Manuf. Rev. 7 (2020) 28 [Google Scholar]
  18. M. Milčić, D. Milčić, T. Vuherer, L. Radovic, I. Radisavljević, A. Djuric, Influence of welding speed on fracture toughness of friction stir welded AA2024-T351 joints, Materials 14 (2021) 1561 [CrossRef] [Google Scholar]
  19. W. Xu, J.H. Liu, D.L. Chen, G.H. Luan, Low-cycle fatigue of a friction stir welded 2219-T62 aluminum alloy at different welding parameters and cooling conditions, Int. J. Adv. Manuf. Technol. 74 (2014) 209–218 [CrossRef] [Google Scholar]
  20. O. Hatamleh, The effects of laser peening and shot peening on mechanical properties in friction stir welded 7075-T7351 aluminum, J. Mater. Eng. Perform. 17 (2018) 688–694 [Google Scholar]
  21. L. Nie, Y. Wu, G. Hai, D. Chen, X. Guo, Effect of shot peening on redistribution of residual stress field in friction stir welding of 2219 aluminum alloy, Materials 13 (2020) 3169 [CrossRef] [Google Scholar]
  22. R. Kosturek, L. Sniezek, M. Wachowski, J. Torzewski, The influence of post-weld heat treatment on the microstructure and fatigue properties of Sc-modified AA2519 friction stir-welded joint, Materials 12 (2019) 583 [CrossRef] [Google Scholar]
  23. Z. Zhang, B. Xiao, Z.Y. Ma, Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219Al-T6 joints, J. Mater. Sci. 47 (2012) 4075–4086 [CrossRef] [Google Scholar]
  24. D.G. Mohan, J. Tomków, S. Gopi, Induction assisted hybrid friction stir welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel, Adv. Mater. 21 (2021) 17–30 [Google Scholar]
  25. G.Q. Sun, J.P. Niu, Y.J. Chen et al., Experimental research on fatigue failure for 2219-T6 aluminum alloy friction stir-welded joints, J. Mater. Eng. Perform. 26 (2017) 3767–3774 [CrossRef] [Google Scholar]
  26. M. Pitchandi, A. Prabhu, S. Manwatkar, S. Rao, N. Svs, D. Sivakumar, B. Pant, M. Mohan, Tensile and fracture properties of aluminium alloy AA2219-T87 friction stir weld joints for aerospace applications, Metall. Mater. Trans. A 52 (2021) 3759–3776 [Google Scholar]
  27. R. Kosturek, L. Sniezek, J. Torzewski, T. Slezak, M. Wachowski, I. Szachogłuchowicz, Research on the properties and low cycle fatigue of Sc-modified AA2519-T62 FSW joint, Materials 13 (2020) 5226 [CrossRef] [Google Scholar]
  28. W. Wang, P. Han, K. Qiao, T. Li, K. Wang, J. Cai, L. Wang, Effect of the rotation rate on the low-cycle fatigue behavior of friction-stir welded AZ31 magnesium alloy, Eng. Fract. Mech. 228 (2020) 106925 [CrossRef] [Google Scholar]
  29. R. Kosturek, L. Sniezek, J. Torzewski, M. Wachowski, Low cycle fatigue properties of Sc-modified AA2519-T62 extrusion, Materials 13 (2020) 220–231 [Google Scholar]
  30. P.S. Song, B.C. Sheu, Y.L. Shieh, Prediction of semi-elliptical surface crack growth in 2024-T4 aluminium alloy, Int. J. Pres. Ves. Pip. 79 (2002) 273–278 [CrossRef] [Google Scholar]
  31. L. Sniezek, T. Slezak, K. Grzelak, V. Hutsaylyuk, An experimental investigation of propagation the semi-elliptical surface cracks in an austenitic steel, Int. J. Pres. Ves. Pip. 144 (2016) 35–44 [CrossRef] [Google Scholar]
  32. J.Y. Xiao, G.Z. Wang, S.T. Tu, F.Z. Xuan, Engineering estimation method of unified constraint parameters for semi-elliptical surface cracks in plates, Eng. Fract. Mech. 229 (2020) 106935 [Google Scholar]
  33. W.H. Van Geertruyden, W.Z. Misiolek, P.T. Wang, Surface grain structure development during indirect extrusion of 6xxx aluminum alloys, J. Mater. Sci. 40 (2005) 3861–3863 [CrossRef] [Google Scholar]
  34. Y. Tao, Z. Zhang, B.H. Yu, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma, Friction stir welding of 2060-T8 AlLi alloy. Part I: Microstructure evolution mechanism and mechanical properties, Mater. Charact. 168 (2020) 110524 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.