Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 14
Number of page(s) 14
DOI https://doi.org/10.1051/mfreview/2022012
Published online 30 June 2022
  1. M. Rigacci, R. Sato, K. Shirase, Experimental evaluation of mechanical and electrical power consumption of feed drive systems driven by a ball-screw, Precis. Eng. 64 (2020) 280–287. [CrossRef] [Google Scholar]
  2. S. Bigot et al., Estimating the energy repartition in micro electrical discharge machining, Precis. Eng. 43 (2016) 479–485. [CrossRef] [Google Scholar]
  3. A. Aggarwal et al., Optimizing power consumption for CNC turned parts using response surface methodology and taguchi’s technique—a comparative analysis, J. Mater. Process. Technol. 200 (2008) 373–384. [CrossRef] [Google Scholar]
  4. L. Zhou, C.Y. Wang, Z. Qin, Tool wear characteristics in high-speed milling of graphite using a coated carbide micro endmill, Proc. Inst. Mech. Eng. B 223 (2008) 267–277. [Google Scholar]
  5. G. Zheng et al., Experimental investigation of cutting force, surface roughness and tool wear in high-speed dry milling of AISI 4340 steel, J. Mech. Sci. Technol. 33 (2019) 341–349. [Google Scholar]
  6. Q. Wang et al., A mechanics based prediction model for tool wear and power consumption in drilling operations and its applications, J. Clean. Prod. 234 (2019) 171–184. [CrossRef] [Google Scholar]
  7. Z.Y. Liu et al., Energy consumption and process sustainability of hard milling with tool wear progression, J. Mater. Process. Technol. 229 (2016) 305–312. [CrossRef] [Google Scholar]
  8. T.-D. Hoang et al., Self-adjusting on-line cutting condition for high-speed milling process, J. Mech. Sci. Technol. 34 (2020) 3335–3343. [CrossRef] [Google Scholar]
  9. J.-w. Ma et al., Tool-path planning with constraint of cutting force fluctuation for curved surface machining, Precis. Eng. 51 (2018) 614–624. [CrossRef] [Google Scholar]
  10. S. Jeyakumar, K. Marimuthu, T. Ramachandran, Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM, J. Mech. Sci. Technol. 27 (2013) 2813–2822. [Google Scholar]
  11. L. Min Ki, P. Kun Woo, Singularity analysis with respect to the workspace of a double parallel manipulator, KSME Int. J. 13 (1999) 368–375. [CrossRef] [Google Scholar]
  12. Y. Su et al., Prediction models for specific energy consumption of machine tools and surface roughness based on cutting parameters and tool wear, Proc. Inst. Mech. Eng. B 235 (2020) 1225–1234. [Google Scholar]
  13. K. Zhu, Y.S. Wong, G.S. Hong, Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results, Int. J. Mach. Tools Manufact. 49 (2009) 537–553. [CrossRef] [Google Scholar]
  14. H. Zhang et al., Singularity-free path optimization of the parallel test mechanism for artificial hip joints, J. Mech. Sci. Technol. 32 (2018) 1775–1786. [CrossRef] [Google Scholar]
  15. R. Barbieri, N. Barbieri, K.F. de Lima, Some applications of the PSO for optimization of acoustic filters, Appl. Acoust. 89 (2015) 62–70. [CrossRef] [Google Scholar]
  16. L. Xu et al., Prediction of tool wear width size and optimization of cutting parameters in milling process using novel ANFIS-PSO method, Proc. Inst. Mech. Eng. B (2020) 0954405420935262. [Google Scholar]
  17. Q.K. Pan, L. Wang, B. Qian, A novel multi-objective particle swarm optimization algorithm for no-wait flow shop scheduling problems, Proc. Inst. Mech. Eng. B 222 (2008) 519–539. [CrossRef] [Google Scholar]
  18. A.S. Alghamdi et al., Gaussian process regression (GPR) based non-invasive continuous blood pressure prediction method from cuff oscillometric signals, Appl. Acoust. 164 (2020) 107256. [CrossRef] [Google Scholar]
  19. M. Caserta, S. Voß, A hybrid algorithm for the DNA sequencing problem, Discr. Appl. Math. 163 (2014) 87–99. [CrossRef] [Google Scholar]
  20. D. Nguyen et al., Online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy using ANFIS-GPR hybrid algorithm and Taguchi analysis, Precis. Eng. 55 (2019) 275–292. [CrossRef] [Google Scholar]
  21. W.A. Kline, R.E. DeVor, The effect of runout on cutting geometry and forces in end milling, Int. J. Mach. Tool Des. Res. 23 (1983) 123–140. [CrossRef] [Google Scholar]
  22. P. Krishnakumar, K. Rameshkumar, K.I. Ramachandran, Tool wear condition prediction using vibration signals in high speed machining (HSM) of Titanium (Ti-6Al-4V) alloy, Proc. Comput. Sci. 50 (2015) 270–275. [CrossRef] [Google Scholar]
  23. C.A. Zhou et al., Vibration singularity analysis for milling tool condition monitoring, Int. J. Mech. Sci. 166 (2020) 105254. [CrossRef] [Google Scholar]
  24. M. Pulido, P.J. van Leeuwen, Sequential Monte Carlo with kernel embedded mappings: the mapping particle filter, J. Comput. Phys. 396 (2019) 400–415. [CrossRef] [MathSciNet] [Google Scholar]
  25. Y. Altintaş, P. Lee, A general mechanics and dynamics model for helical end mills, CIRP Ann. 45 (1996) 59–64. [CrossRef] [Google Scholar]
  26. X. Zhang et al., Energy consumption considering tool wear and optimization of cutting parameters in micro milling process, Int. J. Mech. Sci. 178 (2020) 105628. [CrossRef] [Google Scholar]
  27. L. Wang, M. Liang, Chatter detection based on probability distribution of wavelet modulus maxima, Robot. Comput. Integr. Manufactur. 25 (2009) 989–998. [CrossRef] [Google Scholar]
  28. S. Mallat, W.L. Hwang, Singularity detection and processing with wavelets, IEEE Trans. Inf. Theory 38 (1992) 617–643. [CrossRef] [Google Scholar]
  29. Z. Kunpeng, H.G. Soon, W.Y. San, Multiscale singularity analysis of cutting forces for micromilling tool-wear monitoring, IEEE Trans. Ind. Electr. 58 (2011) 2512–2521. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.