Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 15
Number of page(s) 11
DOI https://doi.org/10.1051/mfreview/2022016
Published online 01 July 2022
  1. S.A. Niknam, R. Khettabi, V. Songmene, Machinability and machining of titanium alloys: a review, in Machining of Titanium Alloys. Materials Forming, Machining and Tribology, edited by J. Davim (Springer, Berlin, Heidelberg, 2014), pp. 1–30 [Google Scholar]
  2. C. Veiga, J.P. Davim, A.J.R. Loureiro, Review on machinability of titanium alloys: the process perspective, Rev. Adv. Mater. Sci. 34 (2013) 148–164 [Google Scholar]
  3. A. Pramanik, Problems and solutions in machining of titanium alloys, Int. J. Adv. Manuf. Technol. 70 (2014) 919–928 [CrossRef] [Google Scholar]
  4. S.R. Oke et al., An overview of conventional and non-conventional techniques for machining of titanium alloys, Manuf. Rev. 7 (2020) 34 [Google Scholar]
  5. B.S. Nishanth, V.N. Kulkarni, V.N. Gaitonde, A review on conventional and nonconventional machining of titanium and nickel-based alloys, AIP Conf. Proc. 2200 (2019) 020091 [CrossRef] [Google Scholar]
  6. J.A.E. Qudeiri, A.H.I. Mourad, A. Ziout, Electric discharge machining of titanium and its alloys: review, Int. J. Adv. Manuf. Technol. 96 (2018) 1319–1339 [CrossRef] [Google Scholar]
  7. V.K. Jain, Advanced machining processes (Allied Publishers Pvt. Limited, Edition 6, 2002) [Google Scholar]
  8. S.K. Gauri, S. Chakraborty, A study on the performance of some multi-response optimization methods for WEDM processes, Int. J. Adv. Manuf. Technol. 49 (2010) 155–166 [CrossRef] [Google Scholar]
  9. J.B. Saedon et al., Multi-objective optimization of titanium alloy through orthogonal array and grey relational analysis in WEDM, Proc. Technol. 15 (2014) 832–840 [CrossRef] [Google Scholar]
  10. S.O.N. Raj, S. Prabhu, Modeling and analysis of titanium alloy in wire cut EDM using Grey relation coupled with principle component analysis, Aust. J. Mech. Eng. 15 (2017) 198–209 [CrossRef] [Google Scholar]
  11. M.F. Mohamed, K. Lenin, Optimization of Wire EDM process parameters using Taguchi technique, Mater. Today: Proc. 21 (2020) 527–530 [CrossRef] [Google Scholar]
  12. F. Nourbakhsh et al., Wire electro-discharge machining of titanium alloy, Proc. CIRP. 5 (2013) 13–18 [CrossRef] [Google Scholar]
  13. A. Golshan, D. Ghodsiyeh, S. Izman, Multi-objective optimization of wire electrical discharge machining process using evolutionary computation method: effect of cutting variation, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 229 (2015) 75–85 [CrossRef] [Google Scholar]
  14. S.P. Arikatla, K.T. Mannan, A. Krishnaiah, Parametric optimization in wire electrical discharge machining of titanium alloy using response surface methodology, Mater. Today: Proc. 4 (2017) 1434–1441 [CrossRef] [Google Scholar]
  15. R. Chaudhari et al., Multi-response optimization of WEDM parameters using an integrated approach of RSM-GRA analysis for pure titanium. J. Inst. Eng. (India) Ser. D. 101 (2020) 117–126 [CrossRef] [Google Scholar]
  16. K. Fuse et al., Integration of fuzzy AHP and fuzzy topsis methods for wire electric discharge machining of titanium (Ti6Al4V) alloy using RSM, Materials 14 (2021) 7408 [CrossRef] [Google Scholar]
  17. A. Hascalik, U. Caydas, Electrical discharge machining of titanium alloy (Ti-6Al-4V), Appl. Surf. Sci. 253 (2007) 9007–9016 [CrossRef] [Google Scholar]
  18. K. Sivakumar, R. Gandhinathan, Establishing optimum process parameters for machining titanium alloys (Ti6Al4V) in spark electric discharge machining, Int. J. Eng. Adv. Technol. 2 (2013) 201–204 [Google Scholar]
  19. A. Uthirapathi, D.L. Singaravelu, Effect of rotating tool electrode on machining of titanium alloy using electric discharge machining, Adv. Mater. Res. 651 (2013) 448–452 [CrossRef] [Google Scholar]
  20. R. Chaudhari et al., Effect of WEDM process parameters on surface morphology of nitinol shape memory alloy, Materials 13 (2020) 4943 [CrossRef] [Google Scholar]
  21. K. Fuse et al., Integration of fuzzy AHP and fuzzy TOPSIS methods for wire electric discharge machining of titanium (Ti6Al4V) alloy using RSM, Materials 14 (2021) 7408 [CrossRef] [Google Scholar]
  22. Obara et al., Study of electrical discharge machining of titanium, J. Jpn. Soc. Electr. Mach. Eng. 39 (2005) 9236–9241 [Google Scholar]
  23. M. Manjaiah et al., Influence of process parameters on material removal rate and surface roughness in WED-machining of Ti50Ni40Cu10 shape memory alloy, Int. J. Mach. Machinab. Mater. 18 (2015) 36–53 [Google Scholar]
  24. N. Sharma, T. Raj, J.K. Kumar, Parameter optimization and experimental study on wire electrical discharge machining of porous Ni40Ti60 alloy, J. Eng. Manuf. 231 (2015) 1–15 [Google Scholar]
  25. V.N. Kulkarni et al., Multi performance characteristics optimization in wire electric discharge machining of Nitinol superelastic alloy, Mater. Today. Proc. 5 (2018) 18857–18866 [CrossRef] [Google Scholar]
  26. S. Narendranath et al., Experimental investigations on performance characteristics in wire electro discharge machining of Ti50Ni42. 4Cu7. 6 shape memory alloy, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227 (2013) 1180–1187 [CrossRef] [Google Scholar]
  27. M. Manjaiah et al., Influence of process parameters on material removal rate and surface roughness in WED-machining of Ti50Ni40Cu10 shape memory alloy, Int. J. Mach. Mach. Mater. 18 (2016) 36–53 [Google Scholar]
  28. S. Daneshmand et al., Optimization of electrical discharge machining parameters for Niti shape memory alloy by using the Taguchi method, J. Marine Sci. Technol. 22 (2014) 506–512 [Google Scholar]
  29. M. Manjaiah, S. Narendranath, S. Basavarajappa, Wire electro discharge machining performance of TiNiCu shape memory alloy, Silicon 8 (2016) 467–475 [CrossRef] [Google Scholar]
  30. M.A. Moudood, A. Sabur, M.Y. Ali, I.H. Jaafar, Effect of peak current on material removal rate for electrical discharge machining of non-conductive Al2O3 ceramic, Adv. Mater. Res. 845 (2014) 730–734 [Google Scholar]
  31. V. Gaikwad, V.S. Jatti, Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method, J. King Saud Univ. Eng. Sci. 30 (2018) 266–272 [Google Scholar]
  32. M. Manjaiah et al., Investigation on material removal rate, surface and subsurface characteristics in wire electro discharge machining of Ti50Ni50-xCux shape memory alloy, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 232 (2018) 164–177 [Google Scholar]
  33. N.K. Gupta et al., Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) alloy, Materials 14 (2021) 2292 [CrossRef] [Google Scholar]
  34. D. Doreswamy, J. Javeri, Effect of process parameters in EDM of D2 steel and estimation of coefficient for predicting surface roughness, Int. J. Mach. Mach. Mater. 20 (2018) 101–117 [Google Scholar]
  35. D. Deepak et al., Optimisation of current and pulse duration in electric discharge drilling of D2 steel using graphite electrode, Int. J. Automot. Mech. Eng. 15 (2018) 5914–5926 [CrossRef] [Google Scholar]
  36. V.K. Meena, M.S. Azad, Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy, Mater. Manuf. Proc. 27 (2012) 973–977 [CrossRef] [Google Scholar]
  37. C.H. Huang, A.B. Yang, C.Y. Hsu, The optimization of micro EDM milling of Ti-6Al-4V using a grey Taguchi method and its improvement by electrode coating, Int. J. Adv. Manuf. Technol. 96 (2018) 3851–3859 [CrossRef] [Google Scholar]
  38. D. Devarajaiah, C. Muthumari, Evaluation of power consumption and MRR in WEDM of Ti-6Al-4V alloy and its simultaneous optimization for sustainable production, J. Braz. Soc. Mech. Sci. Eng. 40 (2018) 400 [CrossRef] [Google Scholar]
  39. A.V.S. Ram Prasad et al., Multi-response optimization of machining process parameters for wire electrical discharge machining of lead-induced Ti-6Al-4V alloy using AHP-TOPSIS method, J. Adv. Manuf. Syst. 18 (2019) 213–236 [CrossRef] [Google Scholar]
  40. S.A. Sonawane, B.P. Ronge, P.M. Pawar, Multi-characteristic optimization of WEDM for Ti-6Al-4V by applying grey relational investigation during profile machining, J. Mech. Eng. Sci. 13 (2019) 6059–6087 [CrossRef] [Google Scholar]
  41. D. Devarasiddappa, M. Chandrasekaran, Experimental investigation and optimization of sustainable performance measures during wire-cut EDM of Ti-6Al-4V alloy employing preference-based TLBO algorithm, Mater. Manuf. Proc. 35 (2020) 1204–1213 [CrossRef] [Google Scholar]
  42. N. Lenin et al., Optimization of process control parameters for WEDM of Al-LM25/Fly Ash/B4C hybrid composites using evolutionary algorithms: a comparative study, Metals 11 (2021) 1105 [CrossRef] [Google Scholar]
  43. V. Aggarwal et al., Empirical investigations during WEDM of Ni-27Cu-3.15Al-2Fe-1. 5Mn based superalloy for high temperature corrosion resistance applications, Materials 13 (2020) 3470 [CrossRef] [Google Scholar]
  44. S. Arooj, M. Shah, S. Sadiq, Effect of current in the EDM machining of aluminum 6061 T6 and its effect on the surface morphology, Arab. J. Sci. Eng. 39 (2014) 4187–4199 [CrossRef] [Google Scholar]
  45. K.T. Chiang, F.P. Chang, D.C. Tsai, Modeling and analysis of the rapidly resolidified layer of SG cast iron in the EDM process through the response surface methodology, J. Mater. Proc. Technol. 182 (2007) 525–533 [CrossRef] [Google Scholar]
  46. L. Li et al., Surface integrity characteristics in wire-EDM of Inconel718 at different discharge energy, Proc. CIRP 6 (2013) 220–225 [CrossRef] [Google Scholar]
  47. B. Xu, M.Q. Lian, S.G. Chen, Combining PMEDM with the tool electrode sloshing to reduce recast layer of titanium alloy generated from EDM, Int. J. Adv. Manuf. Technol 117 (2021) 1535–1545 [CrossRef] [Google Scholar]
  48. A. Sahu, S.S. Mahapatra, Surface characteristics of EDMed titanium alloy and AISI 1040 steel workpieces using rapid tool electrode, Arab. J. Sci. Eng. 45 (2020) 699–718 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.