Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 33
Number of page(s) 16
DOI https://doi.org/10.1051/mfreview/2022030
Published online 18 November 2022
  1. J. Szekely, R.T. Yadoya, The physical and mathematical modeling of the flow field in the mold region in continuous casting systems: Part I: model studies with aqueous systems, J. Metall. Trans. 3 (1972) 2673–2680 [CrossRef] [Google Scholar]
  2. T. Robertson, P. Moore, R. Hawkins, Computational flow model as aid to solution of fluid flow problems in the steel industry, J. Ironmak. Steelmak. 13 (1986) 195–203 [Google Scholar]
  3. B. Thomas, L. Mika, F. Najjar, Simulation of fluid flow inside a continuous slab-casting machine, J. Metall. Trans. B 21 (1990) 387–400 [CrossRef] [Google Scholar]
  4. D. Gupta, A. Lahiri, Water-modeling study of the surface disturbances in continuous slab caster, J. Metall. Mater. Trans. B 25B (1994) 227–233 [CrossRef] [Google Scholar]
  5. L. Chiang, Water modelling of IPSCO's slab caster tundish, J. Steelmak. Conf. Proc. 75 (1992) 437–450 [Google Scholar]
  6. M.C. Tsai, M.J. Green, Three-dimensional concurrent numerical simulation of molten steel behavior and chemical transition at Inland Steel's No. 2 Caster Tundish, J. Steelmak. Conf. Proc. 74 (1991) 501–504 [Google Scholar]
  7. D.Y. Sheng, C.S. Kim, J.K. Yoon, T.C. Hsiao, Water model study on convection pattern of molten steel flow in continuous casting tundish, J. ISIJ Int. 38 (1998) 843–851 [CrossRef] [Google Scholar]
  8. A. Matsushita, K. Isogami, M. Temma, T. Ninomiya, K. Tsutsumi, Direct observation of molten steel meniscus in CC mold during casting, J. Trans. Iron Steel Inst. Jpn. 28 (1988) 531–534 [CrossRef] [Google Scholar]
  9. P. Andrzejewski, K.U. Köhler, W. Pluschkell, Model investigations on the fluid flow in continuous casting moulds of wide dimensions, J. Steel Res. 63 (1992) 242–246 [CrossRef] [Google Scholar]
  10. Y. He, Y. Sahai, The effect of tundish wall inclination on the fluid flow and mixing: a modeling study, J. Metall. Trans. B 18 (1987) 81–92 [Google Scholar]
  11. J. Mahmoudi, M. Vynnycky, Modelling of fluid flow, heat transfer and solidification in the strip casting of copper base alloy (I). Water model, J. Scand. J. Metall. 30 (2001) 21–29 [CrossRef] [Google Scholar]
  12. J. Mahmoudi, P. Sivesson, Mathematical modeling of fluid flow, heat transfer and solidification in a Cu-Cr strip casting process, internal report, Outokumpu Copper 22(2000) 1–59 [Google Scholar]
  13. A. Moldavska, T. Welo, The concept of sustainable manufacturing and its definitions: a content-analysis based literature review, J. Clean. Prod. 166 (2017) 744–755 [CrossRef] [Google Scholar]
  14. K.R. Haapala, A.V. Catalina, M.L. Johnson, J.W. Sutherland, Development and application of models for steelmaking and casting environmental performance, J. Manufactur. Sci. Eng. 134 (2012) 051013–051025 [CrossRef] [Google Scholar]
  15. D.R. Gunasegaram, M. Givord, R.G. O'Donnell, ATM: a greener variant of high pressure die casting, J. Mater. Sci. Forum 618–619 (2009) 27–31 [CrossRef] [Google Scholar]
  16. A. Tharumarajah, Benchmarking aluminium die casting operations, J. Resour. Conserv. Recycl. 52 (2008) 1185–1189 [CrossRef] [Google Scholar]
  17. S. Ge, M. Isac, R.I.L. Guthrie, Progress of strip casting technology for steel; historical developments, J. ISIJ Int. 52 (2012) 2109–2122 [CrossRef] [Google Scholar]
  18. R. Wechsler, The status of twin‐roll casting technology, J. Scand. J. Metall. 32 (2003) 58–63 [CrossRef] [Google Scholar]
  19. J. Mahmoudi, M. Vynnycky, Modelling of fluid flow, heat transfer and solidification in the strip casting of copper base alloy (II). Heat transfer, J. Scand. J. Metall. 30 (2001) 30–40 [CrossRef] [Google Scholar]
  20. J. Mahmoudi, Horizontal continuous casting study, Int. J. Cast Metals Res. 18 (2005) 41–55 [Google Scholar]
  21. J. Mahmoudi, Mathematical modelling of fluid flow, heat transfer and solidification in a strip continuous casting process, Int. J. Cast Metals Res. 2 (2006) 43–61 [Google Scholar]
  22. J. Mahmoudi, Modeling of fluid flow and heat transfer in a copper based heat sink application, Int. J. Green Energy 3 (2006) 43–61 [CrossRef] [Google Scholar]
  23. J. Mahmoudi, M. Vynnycky, P. Sivesson, H. Fredriksson, An experimental and numerical study on the modeling of fluid flow, heat transfer and solidification in a copper continuous strip casting process, Mater Trans. JIM 44 (2003) 1741–1751 [CrossRef] [Google Scholar]
  24. J. Mahmoudi, M. Vynnycky, H. Fredriksson, Modeling of fluid flow, heat transfer and solidification in the strip casting of copper base alloy, Part 3. Solidification − a theoretical study, Scand. J. Metall. 30 (2001) 136–145 [CrossRef] [Google Scholar]
  25. J. Mahmoudi, H. Fredriksson, Solidification behavior of rapidly quenched Cu-Sn alloys, Mater. Trans. JIM 41 (2000) 1575–1582 [CrossRef] [Google Scholar]
  26. J. Mahmoudi, H. Fredriksson, Thermal analysis of Copper-tin alloys during rapid solidification processing, J. Mater. Sci. 35 (2000) 4977–4987 [CrossRef] [Google Scholar]
  27. J. Mahmoudi, H. Fredriksson, Modeling of solidification for copper-base alloys during rapid solidification processing, Mater. Sci. Eng. A 22 (1997) 226–228 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.