Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 32
Number of page(s) 21
DOI https://doi.org/10.1051/mfreview/2022031
Published online 07 November 2022
  1. K. Kumar, D. Zindani, J.P. Davim, Industry 4.0: Developments Towards the Fourth Industrial Revolution (Springer, 2019) [CrossRef] [Google Scholar]
  2. O. Givehchi et al., Interoperability for industrial cyber-physical systems: an approach for legacy systems, IEEE Trans. Ind. Inf. 13 (2017) 3370–3378 [CrossRef] [Google Scholar]
  3. D. Jaspert et al., Smart retrofitting in manufacturing: a systematic review, J. Clean. Product. 312 (2021) 127555 [CrossRef] [Google Scholar]
  4. C. Alias et al., Adapting warehouse management systems to the requirements of the evolving era of industry 4.0, in ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing (2017) [Google Scholar]
  5. R.G. Lins et al., A novel methodology for retrofitting cnc machines based on the context of industry 4.0, in 2017 IEEE International Systems Engineering Symposium (ISSE). IEEE (2017) [Google Scholar]
  6. J.D. Contreras Pérez, R.E. Cano Buitrón, J.I. García Melo, Methodology for the retrofitting of manufacturing resources for migration of SME towards industry 4.0, in Applied Informatics (Springer International Publishing, 2018), pp. 337–351 [Google Scholar]
  7. E. Rauch et al., SME requirements and guidelines for the design of smart and highly adaptable manufacturing systems, in Industry 4.0 for SMEs, edited by D.T. Matt, V. Modrák, H. Zsifkovits (Springer International Publishing, Cham, 2020), pp. 39–72 [Google Scholar]
  8. D.H. Arjoni et al., Manufacture equipment retrofit to allow usage in the industry 4.0, in 2017 2nd international conference on Cybernetics, Robotics and Control (CRC). IEEE (2017) [Google Scholar]
  9. K.A. Nsiah et al., An open-source toolkit for retrofit industry 4.0 sensing and monitoring applications, in 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE (2018) [Google Scholar]
  10. M.A. Khan et al., Review on upgradability – a product lifetime extension strategy in the context of product service systems, J. Clean. Product. 204 (2018) 1154–1168 [CrossRef] [Google Scholar]
  11. X. Li et al., A data-driven reversible framework for achieving Sustainable Smart product-service systems, J. Clean. Product. 279 (2021) 123618 [CrossRef] [Google Scholar]
  12. J.I. García, R.E. Cano, J.D. Contreras, Digital retrofit: a first step toward the adoption of Industry 4.0 to the manufacturing systems of small and medium-sized enterprises, Proc. Inst. Mech. Eng. B 234 (2020) 1156–1169 [CrossRef] [Google Scholar]
  13. B.V. Guerreiro et al., Definition of smart retrofitting: first steps for a company to deploy aspects of industry 4.0, in Advances in Manufacturing (Springer International Publishing, 2018), pp. 161–170 [Google Scholar]
  14. D.T. Matt, V. Modrák, H. Zsifkovits, Industry 4.0 for SMEs. Challenges, Opportunities and Requirements (Palgrave Macmillan, 2020) [CrossRef] [Google Scholar]
  15. T. Stock, G. Seliger, Opportunities of sustainable manufacturing in industry 4.0, Proc. CIRP 40 (2016) 536–541 [CrossRef] [Google Scholar]
  16. D.-Y. Kim et al., A modular factory testbed for the rapid reconfiguration of manufacturing systems, J. Intell. Manufactur. 31 (2020) 661–680 [CrossRef] [Google Scholar]
  17. C. Pallasch et al., Productron: towards flexible distributed and networked production, in 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE (2018) [Google Scholar]
  18. D. Tantscher, B. Mayer, Digital Retrofitting of legacy machines: a holistic procedure model for industrial companies, CIRP J. Manufactur. Sci. Technol. 36 (2022) 35–44 [CrossRef] [Google Scholar]
  19. S. Mittal et al., A smart manufacturing adoption framework for SMEs, Int. J. Product. Res. 58 (2020) 1555–1573 [CrossRef] [Google Scholar]
  20. S. Mittal et al., Smart manufacturing: characteristics, technologies and enabling factors, Proc. Inst. Mech. Eng. B 233 (2019) 1342–1361 [CrossRef] [Google Scholar]
  21. T. Wuest, K.-D. Thoben, Information management for manufacturing SMEs, in IFIP International Conference on Advances in Production Management Systems (Springer, 2011) [Google Scholar]
  22. S. Mittal et al., A critical review of smart manufacturing & Industry 4.0 maturity models: implications for small and medium-sized enterprises (SMEs), J. Manufactur. Syst. 49 (2018) 194–214 [CrossRef] [Google Scholar]
  23. E.G. Popkova, Y.V. Ragulina, A.V. Bogoviz, Fundamental differences of transition to industry 4.0 from previous industrial revolutions, in Industry 4.0: Industrial Revolution of the 21st Century (Springer International Publishing, 2019), pp. 21–29 [Google Scholar]
  24. A.T. Sufian et al., Six-gear roadmap towards the smart factory, Appl. Sci. 11 (2021) 3568 [CrossRef] [Google Scholar]
  25. L. Bibby, B. Dehe, Defining and assessing industry 4.0 maturity levels – case of the defence sector, Product. Plan. Control 29 (2018) 1030–1043 [CrossRef] [Google Scholar]
  26. K.Y. Akdil, A. Ustundag, E. Cevikcan, Maturity and readiness model for industry 4.0 strategy, in Industry 4.0: Managing the digital transformation (Springer, 2018), pp. 61–94 [Google Scholar]
  27. M. Brettel et al., How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 perspective, Int. J. Inf. Commun. Eng. 8 (2014) 37–44 [Google Scholar]
  28. L.S. Dalenogare et al., The expected contribution of Industry 4.0 technologies for industrial performance, Int. J. Product. Econ. 204 (2018) 383–394 [CrossRef] [Google Scholar]
  29. R. Anderl et al., Guideline Industrie 4.0-Guiding principles for the implementation of Industrie 4.0 in small and medium sized businesses, in Vdma forum industrie (2015) [Google Scholar]
  30. F.B.D. Reis, A.S. Camargo Júnior, Industry 4.0 in manufacturing: benefits, barriers and organizational factors that influence its adoption, Int. J. Innov. Technol. Manag. 18 (2021) [Google Scholar]
  31. S.S. Kamble et al., A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs – a review and empirical investigation, Int. J. Product. Econ. 229 (2020) 107853 [CrossRef] [Google Scholar]
  32. H. Zhang et al., Making the business case for sustainable manufacturing in small and medium-sized manufacturing enterprises: a systems decision making approach, J. Clean. Product. 287 (2021) 125038 [CrossRef] [Google Scholar]
  33. T. Masood, P. Sonntag, Industry 4.0: adoption challenges and benefits for SMEs, Comput. History 121 (2020) 103261 [Google Scholar]
  34. R.Y. Zhong et al., Intelligent manufacturing in the context of industry 4.0: a review, Engineering 3 (2017) 616–630 [CrossRef] [Google Scholar]
  35. Mckinsey, Leading the digital transformation (2020) [Google Scholar]
  36. M. Rüßmann et al., Industry 4.0: the future of productivity and growth in manufacturing industries, Boston Consult. Group 9 (2015) 54–89 [Google Scholar]
  37. N. Kampe, Technology in Industry Report. Automation Alley (2018) [Google Scholar]
  38. F. Azmat et al., Closing the skills gap in the era of industrial digitalisation, in 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). IEEE (2020) [Google Scholar]
  39. N. Krirkgulthorn, The implementation of Industry 4.0 to improve sustainability performance in the Dutch construction industry (2020) [Google Scholar]
  40. J. Herwan et al., Retrofitting old CNC turning with an accelerometer at a remote location towards Industry 4.0, Manufactur. Lett. 21 (2019) 56–59 [CrossRef] [Google Scholar]
  41. D. Etz, H. Brantner, W. Kastner, Smart manufacturing retrofit for brownfield systems, Proc. Manufactur. 42 (2020) 327–332 [CrossRef] [Google Scholar]
  42. F. Di Carlo et al., Retrofitting a process plant in an industry 4.0 perspective for improving safety and maintenance performance, Sustainability 13 (2021) 646 [CrossRef] [Google Scholar]
  43. S.S.H. Al-Maeeni et al., Smart retrofitting of machine tools in the context of industry 4.0, Proc. CIRP 88 (2020) 369–374 [CrossRef] [Google Scholar]
  44. I. Machorro-Cano et al., A brief review of IoT platforms and applications in industry, in New Perspectives on Applied Industrial Tools and Techniques (Springer International Publishing, 2018), pp. 293–324 [Google Scholar]
  45. M. Resman et al., A new architecture model for smart manufacturing: a performance analysis and comparison with the RAMI 4.0 reference model, Adv. Prod. Eng. Manag. 14 (2019) 153–165 [Google Scholar]
  46. P. Zheng et al., A survey of smart product-service systems: key aspects, challenges and future perspectives, Adv. Eng. Inf. 42 (2019) 100973 [CrossRef] [Google Scholar]
  47. T. Lins, R.A.R. Oliveira, Cyber-physical production systems retrofitting in context of industry 4.0, Comput. Ind. Eng. 139 (2020) 106193 [CrossRef] [Google Scholar]
  48. C. Bunterngchit, S. Pornchaivivat, Y. Bunterngchit. Productivity improvement by retrofit concept in auto parts factories, in 2019 8th International Conference on Industrial Technology and Management (ICITM). IEEE (2019) [Google Scholar]
  49. H. Haskamp et al. Implementing an OPC UA interface for legacy PLC-based automation systems using the Azure cloud: an ICPS-architecture with a retrofitted RFID system, in 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE (2018) [Google Scholar]
  50. M. Ehrlich, L. Wisniewski, J. Jasperneite, Usage of retrofitting for migration of industrial production lines to industry 4.0. Jahreskolloquium Kommunikation in der Automation (KommA) (2015) [Google Scholar]
  51. P. Strauß et al., Enabling of predictive maintenance in the brownfield through low-cost sensors, an IIoT-architecture and machine learning, in 2018 IEEE International conference on big data (big data). IEEE (2018) [Google Scholar]
  52. D. Bakir, R. Bakir, F. Engels, Industry_Integrator as retrofit solution for digital manufacturing methods in existing industrial plants, Proc. Manufactur. 17 (2018) 1009–1014 [CrossRef] [Google Scholar]
  53. M. Laursen, P. Svejvig, Taking stock of project value creation: a structured literature review with future directions for research and practice, Int. J. Project Manag. 34 (2016) 736–747 [CrossRef] [Google Scholar]
  54. D.P. Lepak, K.G. Smith, M.S. Taylor, Introduction to special topic forum: Value creation and value capture: a multilevel perspective, Acad. Manag. Rev. (2007) 180–194 [CrossRef] [Google Scholar]
  55. G.-Y. Tzou, Y.-C. Fan, J.-Y. Chang, Embedded smart box for legacy machines to approach to I 4.0 in smart manufacturing, MATEC Web Conf. 185 (2018) 00027 [CrossRef] [EDP Sciences] [Google Scholar]
  56. P.W. Morris, Reconstructing Project Management (John Wiley & Sons, 2013) [Google Scholar]
  57. M. Zambetti et al., Enabling servitization by retrofitting legacy equipment for Industry 4.0 applications: benefits and barriers for OEMs, Proc. Manufactur. 48 (2020) 1047–1053 [CrossRef] [Google Scholar]
  58. D. Freddi, Digitalisation and employment in manufacturing, AI & Soc. 33 (2018) 393–403 [CrossRef] [Google Scholar]
  59. A. Salvi et al., Online information on digitalisation processes and its impact on firm value, J. Bus. Res. 124 (2021) 437–444 [CrossRef] [Google Scholar]
  60. M. Suvarna et al., Smart manufacturing for smart cities—overview, insights, and future directions, Adv. Intell. Syst. 2 (2020) 2000043 [CrossRef] [Google Scholar]
  61. A. Abella, M. Ortiz-de-Urbina-Criado, C. De-Pablos-Heredero, A model for the analysis of data-driven innovation and value generation in smart cities’ ecosystems, Cities 64 (2017) 47–53 [CrossRef] [Google Scholar]
  62. T.R. Kurfess et al., A review of modern communication technologies for digital manufacturing processes in industry 4.0, J. Manufactur. Sci. Eng. 142 (2020) 1–38 [Google Scholar]
  63. T. John, M. Vorbrocker, Enabling IoT connectivity for ModbusTCP sensors, in 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE (2020) [Google Scholar]
  64. G. Hawkridge et al., Tying together solutions for digital manufacturing: assessment of connectivity technologies & approaches, in 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE (2019) [Google Scholar]
  65. F. Pommier et al., Validation of a directed energy ignition system on a large-bore single cylinder gas-fueled engine, in ASME 2020 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers (2020) [Google Scholar]
  66. R. Lynn et al., Embedded fog computing for high-frequency MTConnect data analytics, Manufactur. Lett. 15 (2018) 135–138 [CrossRef] [Google Scholar]
  67. S. Figueroa-Lorenzo, J. Añorga, S. Arrizabalaga, A survey of IIoT protocols, ACM Comput. Surv. 53 (2021) 1–53 [CrossRef] [Google Scholar]
  68. Y. Yang, L. Wei, J.J.F.C. Pei, Application of meta-analysis technique to assess effectiveness of HACCP-based FSM systems in Chinese SLDBs, Food Control 96 (2019) 291–298 [CrossRef] [Google Scholar]
  69. J. Wójcicki, Industry 4.0: the future of smart manufacturing, Industry 4 (2018) 13 [Google Scholar]
  70. A. Kumar, A. Nayyar, si3-industry: a sustainable, intelligent, innovative, internet-of-things industry, in A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development (Springer International Publishing, 2020), pp. 1-21 [Google Scholar]
  71. E. Rauch, P. Dallasega, M. Unterhofer, Requirements and barriers for introducing smart manufacturing in small and medium-sized enterprises, IEEE Eng. Manag. Rev. 47 (2019) 87–94 [CrossRef] [Google Scholar]
  72. G.B. Benitez, N.F. Ayala, A.G.J.I.J.o.P.E. Frank, Industry 4.0 innovation ecosystems: An evolutionary perspective on value cocreation, Int. J. Product. Econ. 228 (2020) 107735 [CrossRef] [Google Scholar]
  73. G. Orzes, R. Poklemba, W.T. Towner, Implementing industry 4.0 in SMEs: a focus group study on organizational requirements, in Industry 4.0 for SMEs, edited by D.T. Matt, V. Modrák, H. Zsifkovits (Springer International Publishing, Cham, 2020), pp. 251–277 [Google Scholar]
  74. P. Onu, C.J.M.T.P. Mbohwa, Industry 4.0 opportunities in manufacturing SMEs, Sustain. Outlook 44 (2021) 1925–1930 [Google Scholar]
  75. M. Ghobakhloo, M.J.J.o.M.T.M. Fathi, Corporate survival in Industry 4.0 era: the enabling role of lean-digitized manufacturing (2019) [Google Scholar]
  76. M. Pueo et al., Design methodology for production systems retrofit in SMEs, Int. J. Product. Res. 58 (2019) 4306–4324 [Google Scholar]
  77. M. Ghobakhloo et al., Drivers and barriers of Industry 4.0 technology adoption among manufacturing SMEs: a systematic review and transformation roadmap, J. Manufactur. Technol. Manag. (2022) [Google Scholar]
  78. C. Sánchez-Rodríguez, A.R. Martínez-Lorente, D.J.B.A.I.J. Hemsworth, E-procurement in small and medium sized enterprises; facilitators, obstacles and effect on performance, Benchmarking: An International Journal 27 (2019) 839–866 [Google Scholar]
  79. M. James, Secure by Design: Improving the cyber security of consumer Internet of Things Report (Department for Digital, Culture Media & Sport: London, UK, 2017) [Google Scholar]
  80. C. Suppatvech, J. Godsell, S. Day, The roles of internet of things technology in enabling servitized business models: a systematic literature review, Ind. Market. Manag. 82 (2019) 70–86 [CrossRef] [Google Scholar]
  81. J. Webster, R.T. Watson, Analyzing the past to prepare for the future: writing a literature review, MIS quarterly (2002) . pp xiii–xxiii [Google Scholar]
  82. L.L. Ferreira et al., A pilot for proactive maintenance in industry 4.0, in 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS). IEEE (2017) [Google Scholar]
  83. R. Langmann, L.F. Rojas-Pena, A PLC as an Industry 4.0 component, in 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV). IEEE (2016) [Google Scholar]
  84. J. Vachalek et al., The digital twin of an industrial production line within the industry 4.0 concept, in 2017 21st International Conference on Process Control (PC). IEEE (2017) [Google Scholar]
  85. C.L. Niemeyer et al., Getting small medium enterprises started on industry 4.0 using retrofitting solutions, Proc. Manufactur. 45 (2020) 208–214 [CrossRef] [Google Scholar]
  86. F. Lima, A.A. Massote, R.F. Maia, IoT energy retrofit and the connection of legacy machines inside the industry 4.0 concept, in IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. IEEE (2019) [Google Scholar]
  87. T. Lins et al., Industry 4.0 retrofitting, in 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC). IEEE (2018) [Google Scholar]
  88. M.A. Garcia-Garza et al., A case about the upgrade of manufacturing equipment for insertion into an industry 4.0 environment, Sensors (Basel) 19 (2019) 3304 [CrossRef] [Google Scholar]
  89. H. Jónasdóttir et al., Upgrading legacy equipment to industry 4.0 through a cyber-physical interface, in Advances in Production Management Systems. Smart Manufacturing for Industry 4.0 (Springer International Publishing, 2018), pp. 3–10 [Google Scholar]
  90. C.R. Kancharla et al., Augmented reality based machine monitoring for legacy machines: a retrofitting use case, in 2021 XXX International Scientific Conference Electronics (ET). IEEE (2021) [Google Scholar]
  91. D. Schulz, FDI and the industrial internet of things, in 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE (2015) [Google Scholar]
  92. M. Kostolani, J. Murín, Š. Kozák, An effective industrial control approach, in Proceedings of the 2019 Federated Conference on Computer Science and Information Systems. IEEE (2020) [Google Scholar]
  93. B. Rupprecht et al., Concepts for retrofitting industrial programmable logic controllers for industrie 4.0 scenarios, in 2021 22nd IEEE International Conference on Industrial Technology (ICIT). IEEE (2021) [Google Scholar]
  94. A. Ferreira et al., Retrofitment, open-sourcing, and characterisation of a legacy fused deposition modelling system, Int. J. Adv. Manufactur. Technol. 90 (2016) 3357–3367 [Google Scholar]
  95. F. Biesinger et al., A digital twin for production planning based on cyber-physical systems: a case study for a cyber-physical system-based creation of a digital twin, Proc. CIRP 79 (2019) 355–360 [CrossRef] [Google Scholar]
  96. K. Xing et al., Low-cost precision monitoring system of machine tools for SMEs, Proc. CIRP 96 (2021) 347–352 [CrossRef] [Google Scholar]
  97. R.Y. Zhong, L. Wang, X. Xu, An IoT-enabled real-time machine status monitoring approach for cloud manufacturing, Proc. CIRP 63 (2017) 709–714 [CrossRef] [Google Scholar]
  98. M. Weyrich, C. Ebert, Reference architectures for the internet of things, IEEE Softw. 33 (2016) 112–116 [CrossRef] [Google Scholar]
  99. J. Lee, B. Bagheri, H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems, Manufactur. Lett. 3 (2015) 18–23 [CrossRef] [Google Scholar]
  100. NAMUR, NAMUR Open Architecture. 2017 [cited 2021 30/09]; Available from: https://www.namur.net/en/focus-topics/namur-open-architecture/ [Google Scholar]
  101. E. Trunzer et al., System architectures for Industrie 4.0 applications, Product. Eng. 13 (2019) 247–257 [CrossRef] [Google Scholar]
  102. M. Birtel et al., FutureFit: A strategy for getting a production asset to an industry 4.0 component - a human-centered approach (2019) [Google Scholar]
  103. V.D. Leeuw, Concepts and Applications of the I4.0 Asset Administration Shell. 2019 [cited 2021 10 Oct]; Available from: https://www.arcweb.com/blog/concepts-applications-i40-asset-administration-shell [Google Scholar]
  104. K. Vartanian, T. McDonald, Accelerating industrial adoption of metal additive manufacturing technology, Jom 68 (2016) 806–810 [CrossRef] [Google Scholar]
  105. N.V.K. Jasti, R. Kodali, A literature review of empirical research methodology in lean manufacturing, Int. J. Operat. Product. Manag. (2014) [Google Scholar]
  106. B. Chen et al., Smart factory of industry 4.0: key technologies, application case, and challenges, IEEE Access 6 (2018) 6505–6519 [CrossRef] [Google Scholar]
  107. H. Pei Breivold, Towards factories of the future: migration of industrial legacy automation systems in the cloud computing and Internet-of-things context, Enterprise Inf. Syst. 14 (2019) 542–562 [Google Scholar]
  108. D. Lucke et al., Implementation of the MIALinx integration concept for future manufacturing environments to enable retrofitting of machines, Proc. CIRP 79 (2019) 596–601 [CrossRef] [Google Scholar]
  109. S. Bag et al., Modeling barriers of digital manufacturing in a circular economy for enhancing sustainability, Int. J. Product. Performance Manag. (2021) [Google Scholar]
  110. J.-S. Lee, Y.-W. Su, C.-C. Shen, A comparative study of wireless protocols: bluetooth, UWB, ZigBee, and Wi-Fi, in IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society. IEEE (2007) [Google Scholar]
  111. M. Lekic, G. Gardasevic, IoT sensor integration to Node-RED platform, in 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH). IEEE (2018) [Google Scholar]
  112. M. Pech, J. Vrchota, Classification of small-and medium-sized enterprises based on the level of industry 4.0 implementation, Appl. Sci. 10 (2020) 5150 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.