Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 22
Number of page(s) 15
DOI https://doi.org/10.1051/mfreview/2022019
Published online 10 August 2022
  1. N. Vafaei, R.A. Ribeiro, L.M.C. Matos, Normalization techniques for multi-criteria decision making: analytical hierarchy process case study, in Doctoral Conference on Computing, Electrical and Industrial Systems, Costa de Caparica, Portugal (2017) pp. 261–269 [Google Scholar]
  2. A. Jahan, K.L. Edwards, A state-of-the-art survey on the influence of normalization techniques in ranking: improving the materials selection process in engineering design, Mater. Des. 65 (2015) 335–342 [CrossRef] [Google Scholar]
  3. A. Aytekin, Comparative analysis of the normalization techniques in the context of MCDM problems, Decis. Mak.: Appl. Manag. Eng. 4 (2021) 1–27 [CrossRef] [MathSciNet] [Google Scholar]
  4. Z. Wen, H. Liao, E.K. Zavadskas, MACONT: mixed aggregation by comprehensive normalization technique for multi-criteria analysis, Informatica 31 (2020) 857–880 [Google Scholar]
  5. N. Vafaei, R.A. Ribeiro, M. Luis, C. Matos, Data normalisation techniques in decision making: case study with TOPSIS method, Int. J. Inf. Decis. Sci. 10 (2018) 19–38 [Google Scholar]
  6. N. Ersoy, Selecting the best normalization technique for ROV method: towards a real life application, Gazi Univ. J. Sci. 34 (2021) 592–609 [Google Scholar]
  7. P. Chatterjee, S. Chakraborty, Investigating the effect of normalization norms inflexible manufacturing system selection using multi-criteria decision-making methods, Int. J. Inf. Decis. Sci. 7 (2014) 141–150 [Google Scholar]
  8. E. Mokotoff, E.G.J. Perez, Normalization procedures on multicriteria decision making − an example on environmental problems, in The 12th International Conference on Enterprise Information Systems − Artificial Intelligence and Decision Support Systems (2010) 206–211 [Google Scholar]
  9. K. Palczewski, W. Sałabun, Influence of various normalization methods in PROMETHEE II: an empirical study on the selection of the airport location, Proc. Comput. Sci. 159 (2019) 2051–2060 [CrossRef] [Google Scholar]
  10. T.M. Lakshmi, V.P. Venkatesan, A comparison of various normalization in techniques for order performance by similarity to ideal solution (TOPSIS), Int. J. Comput. Algor. 3 (2014) 255–259 [CrossRef] [Google Scholar]
  11. R. Sarraf, P. Michael, M. Guire, Effect of normalization on TOPSIS and fuzzy TOPSIS, Proc. Conf. Inf. Syst. Appl. Res. 14 (2021) 1–11 [Google Scholar]
  12. Z. Stevic, D. Pamucar, A. Puska, P. Chatterjee, Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement Alternatives and Ranking according to COmpromise Solution (MARCOS), Comput. Ind. Eng. 140 (2020) 1–33 [Google Scholar]
  13. D.Duc Trung, Multi-criteria decision making under the MARCOS method and the weighting methods: applied to milling, grinding and turning processes, Manufactur. Rev. 9 (2022) 1–13 [CrossRef] [EDP Sciences] [Google Scholar]
  14. D. Duc Trung, H.X. Thinh, A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: a comparative study, Adv. Product. Eng. Manag. 16 (2021) 443–456 [CrossRef] [Google Scholar]
  15. D. Duc Trung, A combination method for multi-criteria decision making problem in turning process, Manufactur. Rev. 8 (2021) 1–17 [Google Scholar]
  16. A. Puska, I. Stojanovic, A. Maksimovic, N. Osmanovic, Project management software evaluation by using the measurement of alternatives and ranking according to compromise solution (MARCOS) method, Oper. Res. Eng. Sci.: Theory Appl. 3 (2020) 89–102 [CrossRef] [Google Scholar]
  17. M. Bakır, O. Atalık, Application of fuzzy AHP and fuzzy MARCOS approach for the evaluation of E-service quality in the airline industry, Decis. Mak.: Appl. Manag. Eng. 4 (2021) 127–152 [CrossRef] [Google Scholar]
  18. M. Bakır, S. Akan, E. Ozdemir, Regional aircraft selection with fuzzy piprecia and fuzzy MARCOS: a case study of the Turkish airline industry, Facta Univers. Ser.: Mech. Eng. 19 (2021) 423–445 [CrossRef] [Google Scholar]
  19. A. Mesic, S. Miskic, Z. Stevic, Z. Mastilo, Hybrid MCDM solutions for evaluation of the logistics performance index of the Western Balkan countries, Econ. Innov. Econ. Res. 10 (2022) 13–34 [Google Scholar]
  20. M. Bayane Bouraima, Z. Stevic, I. Tanackov, Y. Qiu, Assessing the performance of Sub-Saharan African (SSA) railways based on an integrated Entropy-MARCOS approach, Oper. Res. Eng. Sci.: Theory Appl. 4 (2021) 13–35 [CrossRef] [Google Scholar]
  21. E. Mahmutagic, Z. Stevi, Z. Nunic, P. Chatterjee, I. Tanackov, An integrated decision-making model for efficiency analysis of the forklifts in warehousing systems, Facta Univ. Ser.: Mech. Eng. 19 (2021) 537–553 [Google Scholar]
  22. R. Chattopadhyay, S. Chakraborty, S. Chakraborty, An integrated D-MARCOS method for supplier selection in an iron and steel industry, Decis. Mak.: Appl. Manag. Eng. 3 (2020) 49–69 [CrossRef] [Google Scholar]
  23. W. Yang, Y. Wu, A new improvement method to avoid rank reversal in VIKOR, IEEE Access 8 (2020) 21261–21271 [CrossRef] [Google Scholar]
  24. B. Ceballos, D.A. Pelta, M.T. Lamata, Rank reversal and the VIKOR method: an empirical evaluation, Int. J. Inf. Technol. Decis. Mak. 17 (2018) 513–525 [CrossRef] [Google Scholar]
  25. D.S. Pamucar, S. Pejcic Tarle, T. Parezanovic, New hybrid multi-criteria decision-making DEMATEL-MAIRCA model: sustainable selection of a location for the development of multimodal logistics centre, Econ. Res. 31 (2018) 1641–1665 [Google Scholar]
  26. M.K. Ghorabaee, E.K. Zavadskas, Z. Turskis, J. Antucheviciene, A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making, Econ. Comput. Econ. Cybern. Stud. Res. 50 (2016) 25–44 [Google Scholar]
  27. M. Borota, D. Božanić, A. Milić, Multicriteria decision-making related to flood protection of Arilje city, in VII international scientific professional conference security and crisis management − theory and practise (SeCMan) − Safety for the future (2021) 58–65 [Google Scholar]
  28. C.M. Rao, K.J. Rao, K.L. Rao, Multi-objective optimization of MRR, Ra and Rz using topsis, Int. J. Eng. Sci. Res. Technol. 5 (2016) 376–384 [Google Scholar]
  29. D. Duc Trung, N.T. Nguyen, D.V. Duc, Study on multi-objective optimization of the turning process of EN 10503 steel by combination of Taguchi method and Moora technique, EUREKA: Phys. Eng. 2021 (2021) 52–65 [CrossRef] [Google Scholar]
  30. M. Keshavarz-Ghorabaee, M. Amiri, E.K. Zavadskas, Z. Turskis, J. Antucheviciene, Determination of objective weights using a new method based on the removal effects of criteria (MEREC), Symmetry 13 (2021) 1–20 [Google Scholar]
  31. V.C. Nguyen, T.D. Nguyen, D.H. Tien, Cutting parameter optimization in finishing milling of Ti-6Al-4V titanium alloy under MQL condition using TOPSIS and ANOVA analysis, engineering, Technol. Appl. Sci. Res. 11 (2021) 6775–6780 [CrossRef] [Google Scholar]
  32. D.Duc Trung, The combination of Taguchi − entropy − WASPAS − PIV methods for multi-criteria decision making when external cylindrical grinding of 65G steel, J. Mach. Eng. 21 (2021) 90–105 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.