Open Access
Manufacturing Rev.
Volume 9, 2022
Article Number 23
Number of page(s) 18
Published online 12 August 2022
  1. Y.Y. Chen, L.J. Xu, Z.G. Liu, F.T. Kong, Z.Y. Chen, Microstructures and properties of titanium alloys Ti-Mo for dental use, Trans. Nonferrous Met. Soc. China (English Ed.) 16 (2006) s824–s828 [Google Scholar]
  2. T.C. Dzogbewu, Additive manufacturing of porous Ti-based alloys for biomedical applications − a review, J. New Gener. Sci. 15 (2017) 278–294 [Google Scholar]
  3. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants − a review, Progr. Mater. Sci. 54 (2009) 397–425 [CrossRef] [Google Scholar]
  4. T.C. Dzogbewu, Laser powder bed fusion of Ti6Al4V lattice structures and their applications, J. Met. Mater. Miner. 30 (2020) 68–78 [Google Scholar]
  5. M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, Sci. Technol. Adv. Mater. 4 (2003) 445–454 [CrossRef] [Google Scholar]
  6. T.C. Dzogbewu, S. Afrifa Jnr, N. Amoah, S.K. Fianko, D. de Beer, Additive Manufacturing Interventions during the COVID-19 Pandemic: South Africa, Appl. Sci. 12 (2021) 295 [CrossRef] [Google Scholar]
  7. M. Niinomi, Y. Liu, M. Nakai, H. Liu, H. Li, Biomedical titanium alloys with Young's moduli close to that of cortical bone, Regener. Biomater. 3 (2016) 173–185 [CrossRef] [Google Scholar]
  8. H. Liu, M. Niinomi, M. Nakai, J. Hieda, K. Cho, Changeable Young's modulus with large elongation-to-failure in β-type titanium alloys for spinal fixation applications, Scr. Mater. 82 (2014) 29–32 [CrossRef] [Google Scholar]
  9. F.H. Sam Froes, Titanium for medical and dental applications − an introduction, in Titanium in Medical and Dental Applications , Elsevier (2018) pp. 3–21 [Google Scholar]
  10. T.C. Dzogbewu, Laser powder bed fusion of Ti15Mo, Results Eng. 7 (2020) 100155 [CrossRef] [Google Scholar]
  11. M.L. Lourenço, G.C. Cardoso, K. dos S.J. Sousa, T.A.G. Donato, F.M.L. Pontes, C.R. Grandini, Development of novel Ti-Mo-Mn alloys for biomedical applications, Sci. Rep. 10 (2020) 1–8 [CrossRef] [Google Scholar]
  12. W.F. Ho, C.P. Ju, J.H. Chern Lin, Structure and properties of cast binary Ti-Mo alloys, Biomaterials 20 (1999) 2115–2122 [CrossRef] [Google Scholar]
  13. Y. Zhan, C. Li, W. Jiang, β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements, Mater. Sci. Eng. C 32 (2012) 1664–1668 [CrossRef] [Google Scholar]
  14. L.J. Xu, Y.Y. Chen, Z.G. Liu, F.T. Kong, The microstructure and properties of Ti-Mo-Nb alloys for biomedical application, J. Alloys Compd. 453 (2008) 320–324 [CrossRef] [Google Scholar]
  15. C. Li, Y. Zhan, W. Jiang, β-Type Ti-Mo-Si ternary alloys designed for biomedical applications, Mater. Des. 34 (2012) 479–482 [CrossRef] [Google Scholar]
  16. T.C. Dzogbewu, W.B. du Preez, Additive manufacturing of ti-based intermetallic alloys: a review and conceptualization of a next-generation machine, Materials 14 (2021) 4317 [CrossRef] [Google Scholar]
  17. T.C. Dzogbewu, Additive manufacturing of TiAl-based alloys, Manufactur. Rev. 7 (2020) 35 [CrossRef] [EDP Sciences] [Google Scholar]
  18. S.A. Raji, A.P.I. Popoola, S.L. Pityana, O.M. Popoola, Characteristic effects of alloying elements on β solidifying titanium aluminides: a review, Heliyon 6 (2020) e04463 [CrossRef] [Google Scholar]
  19. V.R. Jablokov, M.J. Nutt, M.E. Richelsoph, H.L. Freese, The application of Ti-15Mo beta titanium alloy in high strength structural orthopaedic applications, J. ASTM Int. 2 (2005) 491–508 [Google Scholar]
  20. A. Vafadar, F. Guzzomi, A. Rassau, K. Hayward, Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges, Appl. Sci. 11 (2021) 1–33 [Google Scholar]
  21. S. Mirzababaei, S. Pasebani, A review on binder jet additive manufacturing of 316L stainless steel, J. Manufactur. Mater. Process. 3 (2019) 82 [Google Scholar]
  22. T.C. Dzogbewu, N. Amoah, S.K. Fianko, S. Afrifa, D. de Beer, Additive manufacturing towards product production: a bibliometric analysis, Manuf. Rev. 9 (2022) doi: 10.1051/mfreview/2021032 [Google Scholar]
  23. T.C. Dzogbewu, W.B. du Preez, Additive manufacturing of titanium‐based implants with metal‐based antimicrobial agents, Metals 11 (2021) 1–12 [Google Scholar]
  24. T.C. Dzogbewu, L. Monaheng, I. Yadroitsava, W.B. du Preez, I. Yadroitsev, Finite element analysis in design of DMLS mandible implants, in Challenges for Technology Innovation: An Agenda for the Future (CRC Press/Balkema, 2017), pp. 155–160 [CrossRef] [Google Scholar]
  25. A. Zenani, T.C. Dzogbewu, W.B. du Preez, I. Yadroitsev, Optimum process parameters for direct metal laser fusing of Ti6Al powder blend, Univers. J. Mech. Eng. 8 (2020) 170–182 [CrossRef] [Google Scholar]
  26. L.A. Ramosena, B.S. Parker, T.C. Dzogbewu, W.B. du Preez, D.C. Blaine, Optimum process parameters for DMLS in-situ alloying of a Ti-10(60Al40V) powder blend, in Rapid Product Development Association of South Africa (RAPDASA) , 2019, pp. 78–93. Available: [Google Scholar]
  27. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, D.G. Sawakin, Cost-effective blended elemental powder metallurgy of titanium alloys for transportation application, Key Eng. Mater. 188 (2000) 55–62 [CrossRef] [Google Scholar]
  28. M.A. Ilani, M. Khoshnevisan, Powder mixed-electrical discharge machining (EDM) with the electrode made by fused deposition modeling (FDM) at Ti-6Al-4V machining procedure, Multiscale Multidiscip. Model. Exp. Des. 3 (2020) 173–186 [CrossRef] [Google Scholar]
  29. N.H. Phan, V.N. Pi. S. Shirguppikar, M.S. Patil, M.A. Ilani, L.X. Hung, T. Muthuramalingam, T.Q. Hung et al., Material removal rate in electric discharge machining with aluminum tool electrode for Ti-6Al-4V titanium alloy, in Lecture Notes in Networks and Systems 178 (Springer Science and Business Media Deutschland GmbH, 2021), pp. 527–533 [CrossRef] [Google Scholar]
  30. R. Ali Mahdavinejad, M. Asghari Ilani, Superior advance research in the electro-discharge machining of Ti alloys: review, Int. J. Sci. Res. Mech. Mater. Eng. (2019) 19–38 [Google Scholar]
  31. N. Khanna, K. Zadafiya, T. Patel, Y. Kaynak, R.A. Rahman Rashid, A. Vafadar, Review on machining of additively manufactured nickel and titanium alloys, J. Mater. Res. Technol. 15 (2021) 3192–3221 [CrossRef] [Google Scholar]
  32. M. Losertová, V. Kubeš, Microstructure and mechanical properties of selective laser melted Ti6Al4V alloy, IOP Conf. Ser.: Mater. Sci. Eng. 266 (2017) 012009 [CrossRef] [Google Scholar]
  33. T.G. Spears, S.A. Gold, In-process sensing in selective laser melting (SLM) additive manufacturing, Integr. Mater. Manufactur. Innov. 5 (2016) 16–40 [CrossRef] [Google Scholar]
  34. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Hierarchical design principles of selective laser melting for high quality metallic objects, Addit. Manuf. 7 (2015) 45–56 [Google Scholar]
  35. Struers, Metallographic preparation of powder metallurgy parts. Accessed: Feb. 05, 2022. Available: [Google Scholar]
  36. T.C. Dzogbewu, Laser powder bed fusion of Ti6Al4V-xCu: process parameters, J. Met. Mater. Miner. 31 (2021) 62–70 [CrossRef] [Google Scholar]
  37. S.A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol. 214 (2014) 2627–2636 [CrossRef] [Google Scholar]
  38. T.C. Dzogbewu, I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, A. du Plessis, Optimal process parameters for in situ alloyed Ti15Mo structures by laser powder bed fusion, in Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium − An Additive Manufacturing Conference, SFF 2017 (2020) pp. 75–96 [Google Scholar]
  39. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108 (2016) 36–45 [CrossRef] [Google Scholar]
  40. S. Das, Physical aspects of process control in selective laser fusing of metals, Adv. Eng. Mater. 5 (2003) 701–711 [CrossRef] [Google Scholar]
  41. C. Körner, E. Attar, P. Heinl, Mesoscopic simulation of selective beam melting processes, J. Mater. Process. Technol. 211 (2011) 978–987 [CrossRef] [Google Scholar]
  42. T.C. Dzogbewu, W.B. du Preez, Producing Ti5Mo-fused tracks and layers via laser powder bed fusion, Metals 12 (2022) 950 [CrossRef] [Google Scholar]
  43. L. Rayleigh, XIX. On the instability of cylindrical fluid surfaces, London, Edinburgh, Dublin Philos. Mag. J. Sci. 34 (1892) 177–180 [CrossRef] [Google Scholar]
  44. S. Kou, C. Limmaneevichitr, P.S. Wei, Oscillatory marangoni flow: a fundamental study by conduction-mode laser spot welding, Weld. J. 90 (2011) [Google Scholar]
  45. L. Pekker, Plateau-Rayleigh Instability of a Cylinder of Viscous Liquid (Rayleigh vs. Chandrasekhar). Accessed: Aug. 19, 2021. [Online] . Available: [Google Scholar]
  46. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, R. Glardon, Fusing of commercially pure titanium powder with a Nd:YAG laser source, Acta Mater. 51 (2003) 1651–1662 [CrossRef] [Google Scholar]
  47. W. Liu, J.N. Dupont, Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (Part II), Acta Mater. 53 (2005) 1545–1558 [CrossRef] [Google Scholar]
  48. E. Saiz, A.P. Tomsia, R.M. Cannon, Ridging effects on wetting and spreading of liquids on solids, Acta Mater. 46 (1998) 2349–2361 [CrossRef] [Google Scholar]
  49. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, J. Mater. Process. Technol. 213 (2013) 606–613 [CrossRef] [Google Scholar]
  50. R. Prümmer, History of shock waves, explosions and impact − a chronological and biographical reference, Peter O.K. Krehl, Propellants, Explos. Pyrotech. 34 (2009) 458–458 [CrossRef] [Google Scholar]
  51. K.A. Mumtaz, N. Hopkinson, Selective laser melting of thin wall parts using pulse shaping, J. Mater. Process. Technol. 210 (2010) 279–287 [CrossRef] [Google Scholar]
  52. I. Yadroitsev, Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders, Appl. Catal. B Environ. 75 (2009) 229–238 [Google Scholar]
  53. A. Kinnear, T.C. Dzogbewu, P. Krakhmalev, I. Yadroitsava, I. Yadroitsev, Manufacturing, microstructure and mechanical properties of selective laser melted Ti6Al4V-Cu, in Proceedings of the LiM- Lasers in Manufacturing, World of Photonics Congress, München, Germany, 25–29 June, 2017 (2017) [Google Scholar]
  54. C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater. 96 (2015) 72–79 [CrossRef] [Google Scholar]
  55. W.E. King et al., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol. 214 (2014) 2915–2925 [CrossRef] [Google Scholar]
  56. J. Yang et al., Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy, Mater. Des. 110 (2016) 558–570 [CrossRef] [Google Scholar]
  57. R. Rai, J.W. Elmer, T.A. Palmer, T. Debroy, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium, J. Phys. D. Appl. Phys. 40 (2007) 5753–5766 [CrossRef] [Google Scholar]
  58. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, Heidelberg, 2011) [CrossRef] [Google Scholar]
  59. AZoM, Titanium Alloys - Physical Properties, AZO Materials (2002). (accessed Aug. 19, 2021) [Google Scholar]
  60. Y. Shi et al., Metal materials for additive manufacturing, Mater. Addit. Manuf. (2021) 403–595 [Google Scholar]
  61. T.C. Dzogbewu, Y.D. Arthur, Comparative studies of locally produced and imported low-carbon steels on the Ghanaian market, J. Nat. Sci. 1 (2013) 15–22 [Google Scholar]
  62. E. Yasa, O. Poyraz, E.U. Solakoglu, G. Akbulut, S. Oren, A study on the stair stepping effect in direct metal laser fusing of a nickel-based superalloy, Proc. CIRP 45 (2016) 175–178 [CrossRef] [Google Scholar]
  63. N. Nhlapo, T.C. Dzogbewu, O. de Smidt, A systematic review on improving the biocompatibility of titanium implants using nanoparticles, Manuf. Rev. 7 (2020) 31 [Google Scholar]
  64. D. Bergström, J. Powell, A.F.H. Kaplan, A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces, J. Appl. Phys. 101 (2007) doi: 10.1063/1.2738417 [Google Scholar]
  65. K. Arafune, A. Hirata, Thermal and solutal Marangoni convection in In-Ga-Sb system, J. Cryst. Growth 197 (1999) 811–817 [CrossRef] [Google Scholar]
  66. E.D. Palik, Handbook of optical constants of solids 1 (Elsevier, 2012) [Google Scholar]
  67. J.Q. Xu, L.Y. Chen, H. Choi, X.C. Li, Theoretical study and pathways for nanoparticle capture during solidification of metal melt, J. Phys. Condens. Matter 24 (2012) [Google Scholar]
  68. B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting, Acta Mater. 68 (2014) 150–158 [CrossRef] [Google Scholar]
  69. F. Huber, M. Rasch, M. Schmidt, Laser powder bed fusion (Pbf-lb/m) process strategies for in-situ alloy formation with high-melting elements, Metals (Basel). 11 (2021) 1–15 [Google Scholar]
  70. G.A. Longhitanoa, M.A. Larosaa, A.L.J. Munhoza, C.A. De Carvalho Zavagliaa, M.C.F. Ierardia, Surface finishes for Ti-6Al-4V alloy produced by direct metal laser sintering, Mater. Res. 18 (2015) 838–842 [CrossRef] [Google Scholar]
  71. L. Hadji, Morphological instability prior to particle engulfment by a solidifying interface, Scr. Mater. 48 (2003) 665–669 [CrossRef] [Google Scholar]
  72. U. Scipioni Bertoli, G. Guss, S. Wu, M.J. Matthews, J.M. Schoenung, In situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion, Additive Manufactur. 135 (2017) 385–396 [Google Scholar]
  73. Q. Shi, D. Gu, M. Xia, S. Cao, T. Rong, Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites, Opt. Laser Technol. 84 (2016) 9–22 [CrossRef] [Google Scholar]
  74. J. Syarif, T.N. Rohmannudin, M.Z. Omar, Z. Sajuri, S. Harjanto, Stability of the beta phase in Ti-Mo-Cr alloy fabricated by powder metallurgy, J. Min. Metall. Sect. B Metall. 49 (2013) 285–292 [CrossRef] [Google Scholar]
  75. P.C. Collins, R. Banerjee, S. Banerjee, H.L. Fraser, Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys, Mater. Sci. Eng. A 352 (2003) 118–128 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.