Open Access
Issue
Manufacturing Rev.
Volume 9, 2022
Article Number 30
Number of page(s) 17
DOI https://doi.org/10.1051/mfreview/2022028
Published online 06 October 2022
  1. W. Naudéand, A. Szirmai, The importance of manufacturing in economic development: Past, present and future perspectives, Merit Working Papers No. 2012−041, 2012 [Google Scholar]
  2. S. Tibbits, C. Mcknelly, C. Olguin, D. Dikovsky, S. Hirsch, 4D printing and universal transformation, in Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) , (2014), p. 539–548 [Google Scholar]
  3. S. Tibbits, Going beyond printing, 3D Print. Addit. Manufactur. 3 (2016) 69–69 [CrossRef] [Google Scholar]
  4. F. Momeni, N.S.M. Hassani, X. Liu, J. Ni, A review of 4d printing, Mater. Des. 122 (2017) 42–79 [CrossRef] [Google Scholar]
  5. Z.X. Khoo, J.E. Teoh, Y. Liu, C.K. Chua, S. Yang, J. An, K.F. Leong, W.Y. Yeong, 3d printing of smart materials: a review on recent progresses in 4D printing, Virt. Phys Prototyp. 10 (2015) 103–122 [CrossRef] [Google Scholar]
  6. X. Li, J. Shang, Z. Wang, Intelligent materials: a review of applications in 4D printing, Assembly Autom. 37 (2017) 170–185 [CrossRef] [Google Scholar]
  7. Y. Shi, H. Wu, C. Yan, X. Yang, D. Chen, C. Zhan, B. Su, B. Song, Z. Liang, S. Pang, S. Wen, B. Liang, Q. Zhao, J. He, Z. Shuquan, Y. Wen, Four-dimensional printing-the additive manufacturing technology of intelligent components, J. Mech. Eng. 56 (2020) 1 [Google Scholar]
  8. R. Feng, Y. Xu, H. Han, W. Huang, Y. Wang, X. LI, Printing method, driving mechanism, deformation mode and application of 4d printing shape memory polymers, Mater. Rep. 35 (2021) 5147–5157 [Google Scholar]
  9. E. Pei, 4D printing-revolution or fad? Assembly Autom. 34 (2014) 123–127 [CrossRef] [Google Scholar]
  10. E. Pei, 4D printing: dawn of an emerging technology cycle, Assembly Autom. 34 (2014) 310–314 [CrossRef] [Google Scholar]
  11. S. Janbaz, N. Noordzij, D.S. Widyaratih, C.W. Hagen, L.E. Fratila-Apachitei, A.A. Zadpoor, Origami lattices with free-form surface ornaments, Sci. Adv. 3 (2017) aao1595 [CrossRef] [Google Scholar]
  12. J.A. Faber, A.F. Arrieta, A.R. Studart, Bioinspired spring origami, Science 359 (2018) 1386 [CrossRef] [Google Scholar]
  13. Y. Mao, Z. Ding, C. Yuan, S. Ai, M. Isakov, J. Wu, T. Wang, M.L. Dunn, H.J. Qi, 3D printed reversible shape changing components with stimuli responsive materials, Sci. Rep. 6 (2016) 24761 [CrossRef] [Google Scholar]
  14. A.Y. Lee, J. An, C.K. Chua, Y. Zhang, Preliminary investigation of the reversible 4d printing of a dual-layer component, Engineering 5 (2019) 1159–1170 [CrossRef] [Google Scholar]
  15. A.Y. Lee, J. An, C.K. Chua, Two-way 4d printing: a review on the reversibility of 3d-printed shape memory materials, Engineering 3 (2017) 663–674 [CrossRef] [Google Scholar]
  16. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J. Lewis, Biomimetic 4D printing, Nat. Mater. 15 (2016) 413–418 [CrossRef] [Google Scholar]
  17. Q. Ge, A.H. Sakhaei, H. Lee, C.K. Dunn, N.X. Fang, M.L. Dunn, Multimaterial 4D printing with tailorable shape memory polymers, Sci. Rep. 6 (2016) srep31110 [CrossRef] [Google Scholar]
  18. J. Ma, B.E. Franco, G. Tapia, K. Karayagiz, L. Johnson, J. Liu, R. Arróyave, I. Karaman, A.H. Elwany, Spatial control of functional response in 4D-printed active metallic structures, Sci. Rep. 7 (2017) srep46707 [CrossRef] [Google Scholar]
  19. H. Lu, X. Luo, T. Chen, Z. Liu, C. Yang, Recent progress of 4D printing technology, J. Aeronaut. Mater. 39 (2019) 1–9 [Google Scholar]
  20. G. Liu, Y.J. Zhao, G. Wu, J. Lu, Origami and 4D printing of elastomer-derived ceramic structures, Sci. Adv. 4 (2018) aat0641 [CrossRef] [Google Scholar]
  21. C. Li, F. Zhang, W. Yali, W. Zheng, Y. Liu, J. Leng, Development of 4D printed shape memory polymers in biomedical field, Sci. Sin. Technolog. 49 (2019) 13–25 [CrossRef] [Google Scholar]
  22. H. Gao, J. Li, F. Zhang, Y. Liu, J. Leng, The research status and challenges of shape memory polymer-based flexible electronics, Mater. Horizons. 6 (2019) 931–944 [CrossRef] [Google Scholar]
  23. H. Wei, X. Wan, Y. Liu, J. Leng, 4D printing of shape memory polymers: research status and application prospects, Sci. Sin. Technolog. 48 (2018) 2–16 [CrossRef] [Google Scholar]
  24. C. Chen, Z. Hu, S. Liu, H. Tseng, Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace, Exp. Opin. Biolog. Therapy 12 (2012) 593–608 [CrossRef] [Google Scholar]
  25. H. Liu, S. Zhao, O. Xin, Analysis on the evolution path and hotspot of knowledge innovation study based on knowledge map, Sustainability 11 (2019) su11195528 [Google Scholar]
  26. C.M. Chao, Science mapping: a systematic review of the literature, J. Data Inform. Sci. 2 (2017) 1–40 [Google Scholar]
  27. Y. Jin, X. Li, R.I. Campbell, S. Ji, Visualizing the hotspots and emerging trends of 3D printing through scientometrics, Rapid Prototyp. J. 24 (2018) 801–812 [CrossRef] [Google Scholar]
  28. M. Veerabasavaiah, S.N. Prakasha, Applications of Bradford's law of scattering in fisheries microbiology literature, Int. J. Library Inf. Netw. 2 (2019) 1182–1192 [Google Scholar]
  29. Q. Ge, H.J. Qi, M.L. Dunn, Active materials by four-dimension printing, Appl. Phys. Lett. 103 (2013) 13190 [Google Scholar]
  30. Z. Ding, C. Yuan, X. Peng, T. Wang, H.J. Qi, M.L. Dunn, Direct 4D printing via active composite materials, Sci. Adv. 3 (2017) sciadv.1602890 [CrossRef] [Google Scholar]
  31. V.C. Li, X. Kuang, C.M. Hamel, D.J. Roach, Y. Deng, H.J. Qi, Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials-multi-methods printing, Addit. Manufactur. 28 (2019) 14–22 [CrossRef] [Google Scholar]
  32. D. Conner, M. Quanyi, H.J. Qi, Design and manufacturing of shape changing structures and devices using hybrid 3D printing, in Proceedings of the 21st International Conference on Composite Materials (2017), pp. 1 [Google Scholar]
  33. K. Yu, Q. Ge, H.J. Qi, Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers, Nat. Commun. 5 (2014) ncomms4066 [CrossRef] [Google Scholar]
  34. Q. Ge, X. Luo, E.D. Rodriguez, X. Zhang, P.T. Mather, M.L. Dunn, H.J. Qi, Thermomechanical behavior of shape memory elastomeric composites, J. Mech. Phys. Solids 60 (2012) 67–83 [CrossRef] [Google Scholar]
  35. K.N. Long, T.F. Scott, H.J. Qi, C.N. Bowman, M.L. Dunn, Photomechanics of light-activated polymers, J. Mech. Phys. Solids 57 (2009) 1103–1121 [CrossRef] [Google Scholar]
  36. H. Li, B. Zhang, K. Yu, C. Yuan, C. Zhou, M.L. Dunn, H.J. Qi, Q. Shi, Q. Wei, J. Liu, Q. Ge, Influence of treating parameters on thermomechanical properties of recycled epoxy-acid vitrimers, Soft Matter. 16 (2020) 1668–1677 [CrossRef] [Google Scholar]
  37. X. Wan, L. Luo, Y. Liu, J. Leng, Direct ink writing based 4D printing of materials and their applications, Adv. Sci. 7 (2020) advs.202001000 [Google Scholar]
  38. C. Lin, L. Liu, Y. Liu, J. Leng, 4D printing of bioinspired absorbable left atrial appendage occluders: a proof-of-concept study, ACS Appl. Mater. Interfaces 13 (2021) 12668–12678 [CrossRef] [Google Scholar]
  39. C. Lin, J. Lv, Y. Li, F. Zhang, J. Li, Y. Liu, L. Liu, J. Leng, 4D-printed biodegradable and remotely controllable shape memory occlusion devices, Adv. Funct. Mater. 29 (2019) adfm.201906569 [Google Scholar]
  40. F. Li, L. Liu, X. Lan, C. Pan, Y. Liu, J. Leng, Q. Xie, Ground and geostationary orbital qualification of a sunlight-stimulated substrate based on shape memory polymer composite, Smart Mater. Struct. 28 (2019) ab18b7 [Google Scholar]
  41. D. Raviv, W. Zhao, C. Mcknelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, S. Tibbits, Active printed materials for complex self- evolving deformations, Sci. Rep. 4 (2014) srep07422 [CrossRef] [Google Scholar]
  42. S. Tibbits, 4D printing: multi-material shape change, Architect. Des. 84 (2014) 116–121 [Google Scholar]
  43. K. Hajash, B. Sparrman, C. Guberan, J. Laucks, S. Tibbits, Large-scale rapid liquid printing, 3D Print. Addit. Manufactur. 4 (2017) 123–131 [Google Scholar]
  44. Q. Ge, C.K. Dunn, H.J. Qi, M.L. Dunn, Active origami by 4D printing, Smart Mater. Struct. 23 (2014) 094007 [CrossRef] [Google Scholar]
  45. Q. Ge, Z. Chen, J. Cheng, B. Zhang, Y. Zhang, H. Li, X. He, C. Yuan, J. Liu, S. Magdassi, S. Qu, 3D printing of highly stretchable hydrogel with diverse UV curable polymers, Sci. Adv. 7 (2021) sciadv. aba4261 [CrossRef] [Google Scholar]
  46. F. Wang, C. Yuan, D. Wang, D.W. Rosen, Q. Ge, A phase evolution based constitutive model for shape memory polymer and its application in 4D printing, Smart Mater. Struct. 29 (2020) 055016 [CrossRef] [Google Scholar]
  47. W.M. van Rees, E.A. Matsumoto, A.S. Gladman, J. Lewis, L. Mahadevan, Mechanics of biomimetic 4D printed structures, Soft Matter. 14 (2018) 8771–8779 [CrossRef] [Google Scholar]
  48. M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, S. Magdassi, 3D printing of shape memory polymers for flexible electronic devices, Adv. Mater. 28 (2016) 4449 [CrossRef] [Google Scholar]
  49. M. Zarek, N. Mansour, S. Shapira, D. Cohn, 4D printing of shape memory-based personalized endoluminal medical devices, Macromol. Rapid Commun. 38 (2017) 201600628 [CrossRef] [Google Scholar]
  50. M. Zarek, M. Layani, S. Eliazar, N. Mansour, I. Cooperstein, E. Shukrun, A. Szlar, D. Cohn, S. Magdassi, 4D printing shape memory polymers for dynamic jewellery and fashionwear, Virt. Phys. Prototyp. 11 (2016) 263–270 [CrossRef] [Google Scholar]
  51. A.M. Shneider, Four stages of a scientific discipline; four types of scientist, Trends Biochem. Sci. 34 (2009) 217–223 [CrossRef] [Google Scholar]
  52. H. Su, P. Lee, Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in technology foresight, Scientometrics 85 (2010) 65–79 [CrossRef] [Google Scholar]
  53. O. Kuksenok, A.C. Balaz, Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers, Mater. Horizons 3 (2016) 53–62 [CrossRef] [Google Scholar]
  54. L. Huang, R. Jiang, J. Wu, J. Song, H. Bai, B. Li, Q. Zhao, T. Xie, Ultrafast digital printing toward 4D shape changing materials, Adv. Mater. 29 (2017) 05390 [Google Scholar]
  55. A.L. Duigou, M. Castro, R. Bevan, N. Martin, 3D printing of wood fibre biocomposites: from mechanical to actuation functionality, Mater. Des. 96 (2016) 106–114 [CrossRef] [Google Scholar]
  56. C. Zhang, X. Lu, G. Fei, Z. Wang, H. Xia, Y. Zhao, 4D printing of a liquid crystal elastomer with a controllable orientation gradient, ACS Appl. Mater. Interfaces 11 (2019) 44774–44782 [CrossRef] [Google Scholar]
  57. P. Parandoush, D. Lin, A review on additive manufacturing of polymer-fiber composites, Compos. Struct. 182 (2017) 36–53 [CrossRef] [Google Scholar]
  58. W. Zhang, F. Zhang, X. Lan, J. Leng, A.S. Wu, T.M. Bryson, C. Cotton, B. Gu, B. Sun, T. Chou, Shape memory behavior and recovery force of 4D printed textile functional composites, Compos. Sci. Technol. 160 (2018) 224–230 [CrossRef] [Google Scholar]
  59. Y. Liu, W. Zhang, F. Zhang, X. Lan, J. Leng, S. Liu, X. Jia, C. Cotton, B. Sun, B. Gu, T. Chou, Shape memory behavior and recovery force of 4D printed laminated miura-origami structures subjected to compressive loading, Compos. B: Eng. 153 (2018) 233–242 [CrossRef] [Google Scholar]
  60. S. Miao, N.J. Castro, M. Nowicki, L. Xia, H. Cui, X. Zhou, W. Zhu, S. Lee, K. Sarkar, G. Vozzi, Y. Tabata, J.P. Fisher, L. Zhang, 4D printing of polymeric materials for tissue and organ regeneration, Mater. Today 20 (2017) 577–591 [CrossRef] [Google Scholar]
  61. G.H. Yang, M. Yeo, Y. Koo, G.H. Kim, 4D bioprinting: technological advances in biofabrication, Macromol. Biosci. 19 (2019) mabi.201800441 [Google Scholar]
  62. S.Y. Hann, H. Cui, M. Nowicki, L. Zhang, 4D printing soft robotics for biomedical applications, Addit. Manufactur. 36 (2020) 101567 [CrossRef] [Google Scholar]
  63. C. Cheng, H. Xie, Z. Xu, L. Li, M. Jiang, L. Tang, K. Yang, Y. Wang, 4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices, Chem. Eng. J. 396 (2020) 125242 [CrossRef] [Google Scholar]
  64. Q. Zhao, H.J. Qi, T. Xie, Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding, Progr. Polym. Sci. 49–50 (2015) 79–120 [CrossRef] [Google Scholar]
  65. C. Chen, M. Song, Visualizing a field of research: a methodology of systematic scientometric reviews, Plos One. 14 (2019) 0223994 [Google Scholar]
  66. C. Chen, F. Ibekwe-Sanjuan, J. Hou, The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis, J. Am. Soc. Inform. Sci. Technol. 61 (2010) 1386–1409 [CrossRef] [Google Scholar]
  67. X. Wu, W.M. Huang, Y. Zhao, Z. Ding, C. Tang, J.L. Zhang, Mechanisms of the Shape Memory Effect in Polymeric Materials, Polymers 6 (2013) 1169–1202 [CrossRef] [Google Scholar]
  68. L.Y. Sun, W.M. Huang, Z. Ding, Y. Zhao, C. Wang, H. Purnawali, C. Tang, Stimulus-responsive shape memory materials: a review, Mater. Des. 33 (2012) 577–640 [CrossRef] [Google Scholar]
  69. Y. Liu, H. Du, L. Liu, J. Leng, Shape memory polymers and their composites in aerospace applications: a review, Smart Mater. Struct. 23 (2014) 023001 [CrossRef] [Google Scholar]
  70. S.M. Felton, M.T. Tolley, E.D. Demaine, D. Rus, R.J. Wood, Applied origami. a method for building self-folding machines, Science 345 (2014) 644–646 [CrossRef] [Google Scholar]
  71. S. Miao, W. Zhu, N.J. Castro, M. Nowicki, X. Zhou, H. Cui, J.P. Fisher, L. Zhang, 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate, Sci Rep. 6 (2016) srep27226 [CrossRef] [Google Scholar]
  72. S. Naficy, R.D. Gately, R.I. Gorkin, H. Xin, G.M. Spinks, 4D printing of reversible shape morphing hydrogel structures, Macromol. Mater. Eng. 302 (2017) 201600212 [CrossRef] [Google Scholar]
  73. M. Bodaghi, R. Noroozi, A. Zolfagharian, M. Fotouhi, S. Norouzi, 4D printing self-morphing structures, Materials 12 (2019) ma12081353 [CrossRef] [Google Scholar]
  74. S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs, Nat. Biotechnol. 32 (2014) 773–785 [Google Scholar]
  75. J.A. Inzana, D. Olvera, S.M. Fuller, J.P. Kelly, O.A. Graeve, E.M. Schwarz, S.L. Kates, H.A. Awad, 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration, Biomaterials 35 (2014) 4026−4034 [Google Scholar]
  76. B.G. Compto, J.A. Lewis, 3D-printing of lightweight cellular composites, Adv. Mater. 26 (2014) 5930 [CrossRef] [Google Scholar]
  77. J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications, Progr. Polym. Sci. 37 (2012) 1720–1763 [CrossRef] [Google Scholar]
  78. J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications, Progr. Mater. Sci. 56 (2011) 1077–113 [CrossRef] [Google Scholar]
  79. Y. Liu, W. Zhang, F. Zhang, J. Leng, S. Pei, L. Wang, X. Jia, C. Cotton, B. Sun, T. Chou, Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid filament, Compos. Sci. Technol. 181 (2019) 107692 [CrossRef] [Google Scholar]
  80. T.D. Ngo, A.R. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges, Compos. B: Eng. 143 (2018) 172–196 [CrossRef] [Google Scholar]
  81. M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: past, present and future developments, Progr. Polym. Sci. 49–50 (2015) 3–33 [CrossRef] [Google Scholar]
  82. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective, Compos. B: Eng. 110 (2017) 442–458 [Google Scholar]
  83. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing, Chem. Rev. 117 (2017) 10212–10290 [CrossRef] [Google Scholar]
  84. S.K. Leist, D. Gao, R. Chiou, J.G. Zhou, Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles, Virt. Phys. Prototyp. 12 (2017) 290–300 [CrossRef] [Google Scholar]
  85. J. Jiang, L.C. Qu, Evolution and emerging trends of sustainability in manufacturing based on literature visualization analysis, IEEE Access. 8 (2020) 121074–121088 [CrossRef] [Google Scholar]
  86. J. Kleinberg, Bursty and hierarchical structure in streams, Data Mining Knowl. Discov. 7 (2003) 373–397 [CrossRef] [MathSciNet] [Google Scholar]
  87. Y. Liu, J.K. Boyles, J. Genzer, M.D. Dickey, Self-folding of polymer sheets using local light absorption, Soft Matter. 8 (2012) 1764–1769 [CrossRef] [Google Scholar]
  88. C. Zhou, Y. Chen, Z. Yang, B. Khoshnevis, Digital material fabrication using mask‐image‐projection‐based stereolithography, Rapid Prototyp. J. 19 (2013) 153–165 [CrossRef] [Google Scholar]
  89. T. Xie, Tunable polymer multi-shape memory effect, Nature 464 (2010) 267–270 [CrossRef] [Google Scholar]
  90. J.E. Teoh, J. An, C.K. Chua, M. Lv, V. Krishnasamy, Y. Liu, Hierarchically self-morphing structure through 4D printing, Virt. Phys. Prototyp. 12 (2017) 61–68 [CrossRef] [Google Scholar]
  91. X. Kuang, D.J. Roach, J. Wu, C.M. Hamel, Z. Ding, T. Wang, M.L. Dunn, H.J. Qi, Advances in 4D printing: materials and applications, Adv. Funct. Mater. 29 (2019) 1805290 [CrossRef] [Google Scholar]
  92. P. Rastogi, B. Kandasubramanian, Breakthrough in the printing tactics for stimuli-responsive materials: 4d printing, Chem. Eng. J. 366 (2019) 264–304 [CrossRef] [Google Scholar]
  93. I.T. Garces, C. Ayranci, Advances in additive manufacturing of shape memory polymer composites, Rapid Prototyp. J. 27 (2021) 379–398 [CrossRef] [Google Scholar]
  94. M. Falahati, P. Ahmadvand, S. Safaee, Y. Chang, Z. Lyu, R.K. Chen, L. Li, Y. Lin, Smart polymers and nanocomposites for 3D and 4D printing, Mater. Today 40 (2020) 215–245 [CrossRef] [Google Scholar]
  95. S. Chung, S.E. Song, Y.T. Cho, Effective software solutions for 4D printing: a review and proposal, Int. J. Precis. Eng. Manufactur. Green Technol. 4 (2017) 359–371 [CrossRef] [Google Scholar]
  96. F. Zhang, W. Linlin, Z. Zhichao, Y. Liu, J. Leng, Magnetic programming of 4D printed shape memory composite structures, Compos. A: Appl. Sci. Manufactur. 125 (2019) 105571 [CrossRef] [Google Scholar]
  97. K. Yu, A. Ritchie, Y. Mao, M.L. Dunn, H.J. Qi, Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials, Proc. IUTAM 12 (2015) 193–203 [CrossRef] [Google Scholar]
  98. J.W. Ryu, M. D'Amato, X. Cui, K.N. Long, H.J. Qi, M.L. Dunn, Photo-origami—bending and folding polymers with light, Appl. Phys. Lett. 100 (2012) 161908 [CrossRef] [Google Scholar]
  99. C.K. Chua, K.F. Leong, 3D Printing and Additive Manufacturing: Principles and Applications, 5nd edn. (World Scientific, 2014) [CrossRef] [Google Scholar]
  100. J. Wu, C. Yuan, Z. Ding, M. Isakov, Y. Mao, T. Wang, M.L. Dunn, H.J. Qi, Multi-shape active composites by 3D printing of digital shape memory polymers, Sci. Rep. 6 (2016) srep24224 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.